STEKLOV PROBLEM WITH AN INDEFINITE WEIGHT FOR THE p-LAPLACIAN

被引:0
|
作者
Torne, Olaf [1 ]
机构
[1] Univ Libre Brussels, B-1050 Brussels, Belgium
关键词
Nonlinear eigenvalue problem; Steklov problem; p-Laplacian; nonlinear boundary condition; indefinite weight;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let Omega subset of R-N, with N >= 2, be a Lipschitz domain and let 1 < p < infinity. We consider the eigenvalue problem Delta(p)u = 0 in Omega and vertical bar del u vertical bar(p- 2) partial derivative u/partial derivative v = lambda m vertical bar u vertical bar p(-2)u on partial derivative Omega, where lambda is the eigenvalue and u is an element of W-1,W- p( Omega) is an associated eigenfunction. The weight m is assumed to lie in an appropriate Lebesgue space and may change sign. We sketch how a sequence of eigenvalues may be obtained using infinite dimensional Ljusternik-Schnirelman theory and we investigate some of the nodal properties of eigenfunctions associated to the first and second eigenvalues. Amongst other results we find that if m(+) not equivalent to 0 and integral partial derivative Omega m d sigma < 0 then the first positive eigenvalue is the only eigenvalue associated to an eigenfunction of definite sign and any eigenfunction associated to the second positive eigenvalue has exactly two nodal domains.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Fractional p-Laplacian problem with indefinite weight in RN: Eigenvalues and existence
    Cui, Na
    Sun, Hong-Rui
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2021, 44 (03) : 2585 - 2599
  • [2] INFINITELY MANY RADIAL SOLUTIONS FOR A p-LAPLACIAN PROBLEM WITH INDEFINITE WEIGHT
    Castro, Alfonso
    Cossio, Jorge
    Herron, Sigifredo
    Velez, Carlos
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2021, 41 (10) : 4805 - 4821
  • [3] STEKLOV EIGENVALUE PROBLEMS WITH INDEFINITE WEIGHT FOR THE (p, q)-LAPLACIAN
    Boukhsas, A.
    Zerouali, A.
    Chakrone, O.
    Karim, B.
    REVUE ROUMAINE DE MATHEMATIQUES PURES ET APPLIQUEES, 2022, 67 (3-4): : 127 - 142
  • [4] On the antimaximum principle for the p-Laplacian with indefinite weight
    Godoy, T
    Gossez, JP
    Paczka, S
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2002, 51 (03) : 449 - 467
  • [5] Global structure of positive solutions for p-Laplacian Neumann problem with indefinite weight
    Ruyun Ma
    Lijuan Yang
    Yali Zhang
    Computational and Applied Mathematics, 2024, 43
  • [6] Global structure of positive solutions for p-Laplacian Neumann problem with indefinite weight
    Ma, Ruyun
    Yang, Lijuan
    Zhang, Yali
    COMPUTATIONAL & APPLIED MATHEMATICS, 2024, 43 (03):
  • [7] Indefinite Perturbations of the Eigenvalue Problem for the Nonautonomous p-Laplacian
    Papageorgiou, Nikolaos S.
    Radulescu, Vicentiu D.
    Sun, Xueying
    MILAN JOURNAL OF MATHEMATICS, 2023, 91 (02) : 353 - 373
  • [8] Indefinite Perturbations of the Eigenvalue Problem for the Nonautonomous p-Laplacian
    Nikolaos S. Papageorgiou
    Vicenţiu D. Rădulescu
    Xueying Sun
    Milan Journal of Mathematics, 2023, 91 : 353 - 373
  • [9] Multiplicity of solutions for p-Laplacian equation in RN with indefinite weight
    Zhou, Qing-Mei
    Wang, Ke-Qi
    MATHEMATICAL COMMUNICATIONS, 2015, 20 (02) : 229 - 240
  • [10] Upper bounds for the Steklov eigenvalues of the p-Laplacian
    Provenzano, Luigi
    MATHEMATIKA, 2022, 68 (01) : 148 - 162