Accelerating the Lyapack library using GPUs

被引:0
|
作者
Ernesto Dufrechu
Pablo Ezzatti
Enrique S. Quintana-Ortí
Alfredo Remón
机构
[1] Universidad de la República,Instituto de Computación
[2] Universidad Jaime I,Departamento de Ingeniería y Ciencia de Computadores
来源
关键词
Control theory; Sparse Lyapunov equations; High performance; GPUs;
D O I
暂无
中图分类号
学科分类号
摘要
Lyapack is a package for the solution of large-scale sparse problems arising in control theory. The package has a modular design, and is implemented as a Matlab toolbox, which renders it easy to utilize, modify and extend with new functionality. However, in general, the use of Matlab in combination with a general-purpose multi-core architecture (CPU) offers limited performance when tackling the sparse linear algebra operations underlying the numerical methods involved in control theory.
引用
收藏
页码:1114 / 1124
页数:10
相关论文
共 50 条
  • [41] Accelerating compute-intensive image segmentation algorithms using GPUs
    Shehab, Mohammed
    Al-Ayyoub, Mahmoud
    Jararweh, Yaser
    Jarrah, Moath
    JOURNAL OF SUPERCOMPUTING, 2017, 73 (05): : 1929 - 1951
  • [42] Accelerating prediction of chemical shift of protein structures on GPUs: Using OpenACC
    Wright, Eric
    Ferrato, Mauricio H.
    Bryer, Alexander J.
    Searles, Robert
    Perilla, Juan R.
    Chandrasekaran, Sunita
    PLOS COMPUTATIONAL BIOLOGY, 2020, 16 (05)
  • [43] Accelerating the detection of DNA differentially methylated regions using multiple GPUs
    Reano, Carlos
    Olanda, Ricardo
    Baydal, Elvira
    Perez, Mariano
    Orduna, Juan M.
    JOURNAL OF SUPERCOMPUTING, 2024, 80 (09): : 13386 - 13410
  • [44] Accelerating High-Dimensional Integration using Lattice Rules on GPUs
    Almulihi, Ahmed
    de Doncker, Elise
    PROCEEDINGS 2017 INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE AND COMPUTATIONAL INTELLIGENCE (CSCI), 2017, : 1588 - 1593
  • [45] Accelerating compute-intensive image segmentation algorithms using GPUs
    Mohammed Shehab
    Mahmoud Al-Ayyoub
    Yaser Jararweh
    Moath Jarrah
    The Journal of Supercomputing, 2017, 73 : 1929 - 1951
  • [46] Accelerating a Massively Parallel Numerical Simulation in Electromagnetism Using a Cluster of GPUs
    Augonnet, Cedric
    Goudin, David
    Pujols, Agnes
    Sesques, Muriel
    PARALLEL PROCESSING AND APPLIED MATHEMATICS (PPAM 2013), PT I, 2014, 8384 : 593 - 602
  • [47] Accelerating Hierarchical Low-Rank Approximation Methods Using GPUs
    Yokota R.
    Kyokai Joho Imeji Zasshi/Journal of the Institute of Image Information and Television Engineers, 2019, 73 (01): : 58 - 61
  • [48] Accelerating All 5-Vertex Subgraphs Counting Using GPUs
    Suganami, Shuya
    Amagasa, Toshiyuki
    Kitagawa, Hiroyuki
    DATABASE AND EXPERT SYSTEMS APPLICATIONS, DEXA 2020, PT I, 2020, 12391 : 55 - 70
  • [49] Accelerating calculations of RNA secondary structure partition functions using GPUs
    Harry A Stern
    David H Mathews
    Algorithms for Molecular Biology, 8
  • [50] Accelerating calculations of RNA secondary structure partition functions using GPUs
    Stern, Harry A.
    Mathews, David H.
    ALGORITHMS FOR MOLECULAR BIOLOGY, 2013, 8