Approximation of variational problems with a convexity constraint by PDEs of Abreu type

被引:0
|
作者
Guillaume Carlier
Teresa Radice
机构
[1] Université Paris IX Dauphine,CEREMADE, UMR CNRS 7534
[2] INRIA-Paris,Department of Mathematics R. Caccioppoli
[3] MOKAPLAN,undefined
[4] University of Naples Federico II,undefined
关键词
35G30; 49K30;
D O I
暂无
中图分类号
学科分类号
摘要
Motivated by some variational problems subject to a convexity constraint, we consider an approximation using the logarithm of the Hessian determinant as a barrier for the constraint. We show that the minimizer of this penalization can be approached by solving a second boundary value problem for Abreu’s equation which is a well-posed nonlinear fourth-order elliptic problem. More interestingly, a similar approximation result holds for the initial constrained variational problem.
引用
收藏
相关论文
共 50 条
  • [21] Revisited convexity notions for L∞ variational problems
    Ribeiro, Ana Margarida
    Zappale, Elvira
    REVISTA MATEMATICA COMPLUTENSE, 2024,
  • [22] A NUMERICAL METHOD FOR VARIATIONAL PROBLEMS WITH CONVEXITY CONSTRAINTS
    Oberman, Adam M.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2013, 35 (01): : A378 - A396
  • [23] Optimality and duality for variational problems with generalized convexity
    Mukherjee, RN
    Rao, CP
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 1997, 28 (11): : 1535 - 1546
  • [24] Approximation of variational eigenvalue problems
    S. I. Solov’ev
    Differential Equations, 2010, 46 : 1030 - 1041
  • [25] Approximation of variational eigenvalue problems
    Solov'ev, S. I.
    DIFFERENTIAL EQUATIONS, 2010, 46 (07) : 1030 - 1041
  • [26] Convexity of the self-energy functional in the variational cluster approximation
    Nevidomskyy, Andriy H.
    Senechal, David
    Tremblay, A. -M. S.
    PHYSICAL REVIEW B, 2008, 77 (07)
  • [27] VARIATIONAL PROBLEMS WITH OBSTACLES AND A VOLUME CONSTRAINT
    HILDEBRANDT, S
    WENTE, HC
    MATHEMATISCHE ZEITSCHRIFT, 1973, 135 (01) : 55 - 68
  • [28] Minima in elliptic variational problems without convexity assumptions
    Tolstonogov, DA
    MATHEMATICAL NOTES, 1999, 65 (1-2) : 109 - 119
  • [29] Minima in elliptic variational problems without convexity assumptions
    D. A. Tolstonogov
    Mathematical Notes, 1999, 65 : 109 - 119
  • [30] HANDLING CONVEXITY-LIKE CONSTRAINTS IN VARIATIONAL PROBLEMS
    Merigot, Quentin
    Oudet, Edouard
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2014, 52 (05) : 2466 - 2487