q-Tensor and Exterior Centers, Related Degrees and Capability

被引:0
|
作者
Raimundo Bastos
Ricardo de Oliveira
Guram Donadze
Noraí Romeu Rocco
机构
[1] Universidade de Brasília,Departamento de Matemática
[2] Campus Darcy Ribeiro,Instituto de Matemática e Estatística
[3] Universidade Federal de Goiás,undefined
[4] Campus Samambaia,undefined
来源
关键词
Non-abelian tensor product; -tensor product; The degree of the commutator; Capability; 18G10; 18G50; 20P05;
D O I
暂无
中图分类号
学科分类号
摘要
We introduce intermediate commutators and study their degrees. We define (q,{})\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(q, \{\})$$\end{document}-capable groups and prove that a group G is (q,{})\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(q, \{\})$$\end{document}-capable if and only if Z(q,{})∧(G)=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Z^{\wedge }_{(q, \{\})}(G)=1$$\end{document}.
引用
收藏
相关论文
共 50 条