Approximation of Classes of Periodic Functions in Several Variables

被引:0
|
作者
A. S. Romanyuk
机构
[1] National Academy of Sciences of Ukraine,Mathematics Institute
来源
Mathematical Notes | 2002年 / 71卷
关键词
orthogonal trigonometric approximation; Besov class of functions; multiple Fourier sum; staircase hyperbolic Fourier sum; Rudin--Shapiro polynomials;
D O I
暂无
中图分类号
学科分类号
摘要
We study the approximation of the classes \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$B_{p,\theta }^r $$ \end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$W_{p,\alpha }^r $$ \end{document} of periodic functions of several variables by multiple Fourier sums of fixed order constructed with regard to individual properties of functions from these classes. In a number of cases, such approximations allow us to achieve a better degree of approximation of the classes indicated above as compared to their approximation by staircase hyperbolic Fourier sums.
引用
收藏
页码:98 / 109
页数:11
相关论文
共 50 条