orthogonal trigonometric approximation;
Besov class of functions;
multiple Fourier sum;
staircase hyperbolic Fourier sum;
Rudin--Shapiro polynomials;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
We study the approximation of the classes \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$$B_{p,\theta }^r $$
\end{document} and \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$$W_{p,\alpha }^r $$
\end{document} of periodic functions of several variables by multiple Fourier sums of fixed order constructed with regard to individual properties of functions from these classes. In a number of cases, such approximations allow us to achieve a better degree of approximation of the classes indicated above as compared to their approximation by staircase hyperbolic Fourier sums.