Synthesis of multi-walled carbon nanotubes/β-FeOOH nanocomposites with high adsorption capacity

被引:0
|
作者
Hao-Jie Song
Lei Liu
Xiao-Hua Jia
Chunying Min
机构
[1] School of Materials Science and Engineering,
[2] Jiangsu University,undefined
[3] Pharmaceutic College of Henan University,undefined
来源
关键词
Multiwalled carbon nanotubes; β-FeOOH; Nanocomposites; Adsorption capacity;
D O I
暂无
中图分类号
学科分类号
摘要
A hybrid nanostructure of multi-walled carbon nanotubes (CNTs) and β-ferric oxyhydroxide (β-FeOOH) nanoparticles is synthesized by ultrasonic-assisted in situ hydrolysis of the precursor ferric chloride and CNTs. Characterization by X-ray diffraction, scanning electron microscopy , and transmission electron microscopy establishes the nanohybrid structure of the synthesized sample. The results revealed that the surface of CNTs was uniformly assembled by numerous β-FeOOH nanoparticles and had an average diameter of 3 nm. The formation route of anchoring β-FeOOH nanoparticles onto CNTs was proposed as the intercalation and adsorption of iron ions onto the wall of CNTs, followed by the nucleation and growth of β-FeOOH nanoparticles. The values of remanent magnetization (Mr) and coercivity (Hc) of the as-synthesized CNTs/β-FeOOH nanocomposites were 0.1131 emu g, and 490.824 Oe, respectively. Furthermore, CNTs/β-FeOOH nanocomposites showed a very high adsorption capacity of Congo red and thus these nanocomposites can be used as good adsorbents and can be used for the removal of the dye of Congo red from the waste water system.
引用
收藏
相关论文
共 50 条
  • [21] Optimization of adsorption phenanthrene on the multi-walled carbon nanotubes
    Abedinloo, R.
    Shahtaheri, S. J.
    Moradi, R.
    Divani, R.
    Azam, K.
    JOURNAL OF HEALTH AND SAFETY AT WORK, 2015, 5 (03) : 29 - 38
  • [22] Adsorption of Phenol by Oxidized Multi-Walled Carbon Nanotubes
    Hai H.
    Wang K.
    Ma Y.
    Zhang J.
    Xia J.
    Xing X.
    Wang T.
    Beijing Daxue Xuebao (Ziran Kexue Ban)/Acta Scientiarum Naturalium Universitatis Pekinensis, 2019, 55 (05): : 961 - 967
  • [23] An elegant synthesis of multi-walled carbon nanotubes
    Srinivasan, C
    CURRENT SCIENCE, 2004, 86 (02): : 256 - 257
  • [24] Adsorption kinetics of lysozyme on multi-walled carbon nanotubes and amino functionalized multi-walled carbon nanotubes from aqueous solution
    Enayatpour, Behdad
    Rajabi, Mostafa
    Moradi, Omid
    Asdolehzade, Neda
    Nayak, Arunima
    Agarwal, Shilpi
    Gupta, Vinod Kumar
    JOURNAL OF MOLECULAR LIQUIDS, 2018, 254 : 93 - 97
  • [25] Adsorption/desorption study of proteins onto multi-walled carbon nanotubes and amino multi-walled carbon nanotubes surfaces as adsorbents
    Enayatpour, Behdad
    Rajabi, Mostafa
    Yari, Mohammad
    Mirkhan, S. Mohammad Reza
    Najafi, Fahimeh
    Moradi, Omid
    Bharti, Arvind Kumar
    Agarwal, Shilpi
    Gupta, Vinod Kumar
    JOURNAL OF MOLECULAR LIQUIDS, 2017, 231 : 566 - 571
  • [26] DIELECTRIC PROPERTIES OF POLYPYRROLE MULTI-WALLED CARBON NANOTUBES NANOCOMPOSITES
    Shakoor, A.
    Niaz, N. A.
    Khan, W.
    Asghar, G.
    Khalid, N. R.
    Rehman, M. N.
    Bashir, T.
    Anwer, N.
    Rizvi, T. Z.
    DIGEST JOURNAL OF NANOMATERIALS AND BIOSTRUCTURES, 2016, 11 (04) : 1145 - 1153
  • [27] The effect of multi-walled carbon nanotubes/hydroxyapatite nanocomposites on biocompatibility
    Park, Jung-Eun
    Jang, Yong-Seok
    Park, Il-Song
    Jeon, Jae-Gyu
    Bae, Tae-Sung
    Lee, Min-Ho
    ADVANCED COMPOSITE MATERIALS, 2018, 27 (01) : 53 - 65
  • [28] Influence of Multi-Walled Carbon Nanotubes on the Mechanical Properties of Nanocomposites
    Her, Shiuhchuan
    Yeh, Shunwen
    MANUFACTURING ENGINEERING AND AUTOMATION I, PTS 1-3, 2011, 139-141 : 9 - 12
  • [29] Multi-walled carbon nanotubes encapsulated with polyurethane and its nanocomposites
    Wang, Xiao
    Du, Zhongjie
    Zhang, Chen
    Li, Congju
    Yang, Xiaoping
    Li, Hangquan
    JOURNAL OF POLYMER SCIENCE PART A-POLYMER CHEMISTRY, 2008, 46 (14) : 4857 - 4865
  • [30] Multi-walled carbon nanotubes-supported Fe(naph)3 nanoparticles to prepare polyacetylene/multi-walled carbon nanotubes nanocomposites
    Mingming Hu
    Linhua Song
    Cuiyu Jiang
    Journal of Materials Science: Materials in Electronics, 2013, 24 : 2357 - 2361