Inferring region significance by using multi-source spatial data

被引:0
|
作者
Shunzhi Zhu
Dahan Wang
Lijuan Liu
Yan Wang
Danhuai Guo
机构
[1] Xiamen University Technology,School of Computer and Information Engineering
[2] Chinese Academy of Sciences,CNIC
来源
关键词
Region; Trajectory; Density; Recommendation; Ranking; Spatial data mining;
D O I
暂无
中图分类号
学科分类号
摘要
The ranking and recommendation of regions of interest are increasingly important in recent years. In this light, we propose and study a novel and interesting problem of inferring region significance using multi-source spatiotemporal data. In our study, POIs, locations, regions, trajectories, and spatial networks are taken into account. Given a set of regions R and a set of trajectories T, we seek for the top-k most attractive regions to users, i.e., regions with the top-k highest spatial-density correlations to the trajectories of travelers. This study is useful in many mobile applications such as urban computing, region recommendation, and location-based service in general. This problem is challenging due to two reasons: (1) how to model the spatial-density correlation effectively and practically and (2) how to process the problem in interactive time. To overcome the challenges, we design a novel spatial-density correlation function to evaluate the relationship between regions and trajectories, and the density of POIs and network distance are taken into account. Then, we develop a series of optimization techniques to accelerate the query efficiency. Furthermore, we develop a parallel mechanism to support big spatial data. Finally, we conduct extensive experiments on real and synthetic spatial data sets to show the efficiency and effectiveness of developed algorithms.
引用
收藏
页码:6523 / 6531
页数:8
相关论文
共 50 条
  • [41] Bayesian analysis of multi-source data
    Bhat, P. C.
    Prosper, H. B.
    Snyder, S. S.
    Physics Letters. Section B: Nuclear, Elementary Particle and High-Energy Physics, 407 (01):
  • [42] Research on the Management of Multi-source Data
    Liu, Wen Jing
    Zhao, Man
    Guo, Fei
    Sun, Xiao Rui
    Chen, Yu
    FRONTIERS OF MANUFACTURING SCIENCE AND MEASURING TECHNOLOGY V, 2015, : 405 - 408
  • [43] Multi-source data analysis challenges
    Uselton, S
    Ahrens, J
    Bethel, W
    Treinish, L
    State, A
    VISUALIZATION '98, PROCEEDINGS, 1998, : 501 - 504
  • [44] Multi-source Heterogeneous Data Fusion
    Zhang, Lili
    Xie, Yuxiang
    Luan Xidao
    Zhang, Xin
    2018 INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND BIG DATA (ICAIBD), 2018, : 47 - 51
  • [45] Bayesian analysis of multi-source data
    Bhat, PC
    Prosper, HB
    Snyder, SS
    PHYSICS LETTERS B, 1997, 407 (01) : 73 - 78
  • [46] Learning from multi-source data
    Fromont, E
    Cordier, MO
    Quiniou, R
    KNOWLEDGE DISCOVERY IN DATABASES: PKDD 2004, PROCEEDINGS, 2004, 3202 : 503 - 505
  • [47] A framework for multi-source data fusion
    Yager, RR
    INFORMATION SCIENCES, 2004, 163 (1-3) : 175 - 200
  • [48] Research and implement of urban spatial data updating based on multi-source and multi-scale
    Ce, Yuan
    Gen, Tian
    Xiong, Zuqiang
    Chen, Xiaosu
    2008 PROCEEDINGS OF INFORMATION TECHNOLOGY AND ENVIRONMENTAL SYSTEM SCIENCES: ITESS 2008, VOL 3, 2008, : 323 - 328
  • [49] A model for the fusion of multi-source data to generate high temporal and spatial resolution VI data
    Yang J.
    Wu Y.
    Wei Y.
    Wang B.
    Ru C.
    Ma Y.
    Zhang Y.
    Yaogan Xuebao/Journal of Remote Sensing, 2019, 23 (05): : 935 - 943
  • [50] Efficient multi-source data transfer in Data Grids
    Wang, Chien-Min
    Hsu, Chun-Chen
    Chen, Hsi-Min
    Wu, Jan-Jan
    SIXTH IEEE INTERNATIONAL SYMPOSIUM ON CLUSTER COMPUTING AND THE GRID: SPANNING THE WORLD AND BEYOND, 2006, : 421 - +