Small Time Uniform Controllability of the Linear One-Dimensional Schrödinger Equation with Vanishing Viscosity

被引:0
|
作者
Ioan Florin Bugariu
Ionel Rovenţa
机构
[1] University of Craiova,Department of Mathematics
关键词
Null-controllability; Schrödinger equation; Biorthogonal; Moment problem; Vanishing viscosity;
D O I
暂无
中图分类号
学科分类号
摘要
This paper addresses the exact controllability problem of the linear one-dimensional Schrödinger equation perturbed by a vanishing viscosity term depending on a strictly positive parameter. It is shown that, for any time and for each initial datum in a suitable space, there exists a uniformly bounded family of boundary controls. Any weak limit of this family is a control for the linear Schrödinger equation.
引用
收藏
页码:949 / 965
页数:16
相关论文
共 50 条
  • [41] High Frequency Solutions for the Singularly-Perturbed One-Dimensional Nonlinear Schrödinger Equation
    Patricio Felmer
    Salomé Martínez
    Kazunaga Tanaka
    Archive for Rational Mechanics and Analysis, 2006, 182 : 333 - 366
  • [42] New variable-step algorithms for computing eigenvalues of the one-dimensional Schrödinger equation
    T. E. Simos
    G. Tougelidis
    Computational Mechanics, 1998, 21 : 424 - 428
  • [43] On a one-dimensional Schrödinger-Poisson scattering model
    N. Ben Abdallah
    P. Degond
    P. A. Markowich
    Zeitschrift für angewandte Mathematik und Physik ZAMP, 1997, 48 : 135 - 155
  • [44] A new approach in handling one-dimensional time-fractional Schrödinger equations
    El-Ajou, Ahmad
    Saadeh, Rania
    Dunia, Moawaih Akhu
    Qazza, Ahmad
    Al-Zhour, Zeyad
    AIMS MATHEMATICS, 2024, 9 (05): : 10536 - 10560
  • [45] Chern–Simons–Schrödinger theory on a one-dimensional lattice
    Hyungjin Huh
    Swaleh Hussain
    Dmitry E. Pelinovsky
    Letters in Mathematical Physics, 2020, 110 : 2221 - 2244
  • [46] Discrete and Embedded Eigenvalues for One-Dimensional Schrödinger Operators
    Christian Remling
    Communications in Mathematical Physics, 2007, 271 : 275 - 287
  • [47] Schrödinger transmission through one-dimensional complex potentials
    Ahmed, Z.
    Physical Review A. Atomic, Molecular, and Optical Physics, 2001, 64 (04): : 427161 - 427164
  • [48] Quantitative observability for one-dimensional Schrödinger equations with potentials
    Su, Pei
    Sun, Chenmin
    Yuan, Xu
    JOURNAL OF FUNCTIONAL ANALYSIS, 2025, 288 (02)
  • [49] On the eigenfunctions of the one-dimensional Schrödinger operator with a polynomial potential
    A. E. Mironov
    B. T. Saparbayeva
    Doklady Mathematics, 2015, 91 : 171 - 172
  • [50] The Absolutely Continuous Spectrum of One-dimensional Schrödinger Operators
    Christian Remling
    Mathematical Physics, Analysis and Geometry, 2007, 10 : 359 - 373