The Densest Subgraph Problem with a Convex/Concave Size Function

被引:0
|
作者
Yasushi Kawase
Atsushi Miyauchi
机构
[1] Tokyo Institute of Technology,School of Engineering
[2] RIKEN Center for Advanced Intelligence Project,undefined
来源
Algorithmica | 2018年 / 80卷
关键词
Graphs; Dense subgraph extraction; Densest subgraph problem; Approximation algorithms;
D O I
暂无
中图分类号
学科分类号
摘要
In the densest subgraph problem, given an edge-weighted undirected graph G=(V,E,w)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G=(V,E,w)$$\end{document}, we are asked to find S⊆V\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S\subseteq V$$\end{document} that maximizes the density, i.e., w(S) / |S|, where w(S) is the sum of weights of the edges in the subgraph induced by S. This problem has often been employed in a wide variety of graph mining applications. However, the problem has a drawback; it may happen that the obtained subset is too large or too small in comparison with the size desired in the application at hand. In this study, we address the size issue of the densest subgraph problem by generalizing the density of S⊆V\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S\subseteq V$$\end{document}. Specifically, we introduce the f-density of S⊆V\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S\subseteq V$$\end{document}, which is defined as w(S) / f(|S|), where f:Z≥0→R≥0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f:\mathbb {Z}_{\ge 0}\rightarrow \mathbb {R}_{\ge 0}$$\end{document} is a monotonically non-decreasing function. In the f-densest subgraph problem (f-DS), we aim to find S⊆V\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S\subseteq V$$\end{document} that maximizes the f-density w(S) / f(|S|). Although f-DS does not explicitly specify the size of the output subset of vertices, we can handle the above size issue using a convex/concave size function f appropriately. For f-DS with convex function f, we propose a nearly-linear-time algorithm with a provable approximation guarantee. On the other hand, for f-DS with concave function f, we propose an LP-based exact algorithm, a flow-based O(|V|3)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(|V|^3)$$\end{document}-time exact algorithm for unweighted graphs, and a nearly-linear-time approximation algorithm.
引用
收藏
页码:3461 / 3480
页数:19
相关论文
共 50 条
  • [11] In Search of the Densest Subgraph
    Farago, Andras
    Mojaveri, Zohre R.
    ALGORITHMS, 2019, 12 (08)
  • [12] DETERMINATION OF THE DENSEST SUBGRAPH
    DONG Jinquan School of Management Inner Mongolia Polytechnic University Huhhot ChinaLIU Yanpei Department of Mathematics Northern Jiaotong University Beijing China
    JournalofSystemsScienceandComplexity, 2004, (01) : 23 - 27
  • [13] DETERMINATION OF THE DENSEST SUBGRAPH
    DONG Jinquan (School of Management
    Journal of Systems Science & Complexity, 2004, (01) : 23 - 27
  • [14] Anchored Densest Subgraph
    Dai, Yizhou
    Qiao, Miao
    Chang, Lijun
    PROCEEDINGS OF THE 2022 INTERNATIONAL CONFERENCE ON MANAGEMENT OF DATA (SIGMOD '22), 2022, : 1200 - 1213
  • [15] The Densest k Subgraph Problem in b-Outerplanar Graphs
    Gonzales, Sean
    Migler, Theresa
    COMPLEX NETWORKS AND THEIR APPLICATIONS VIII, VOL 1, 2020, 881 : 116 - 127
  • [16] On solving the densest k-subgraph problem on large graphs
    Sotirov, Renata
    OPTIMIZATION METHODS & SOFTWARE, 2020, 35 (06): : 1160 - 1178
  • [17] Densest Subgraph in Streaming and MapReduce
    Bahmani, Bahman
    Kumar, Ravi
    Vassilvitskii, Sergei
    PROCEEDINGS OF THE VLDB ENDOWMENT, 2012, 5 (05): : 454 - 465
  • [18] On Directed Densest Subgraph Detection
    Yao, Kai
    Yang, Xin
    Chang, Lijun
    DATABASES THEORY AND APPLICATIONS, ADC 2023, 2024, 14386 : 371 - 384
  • [19] Doubly Nonnegative and Semidefinite Relaxations for the Densest k-Subgraph Problem
    Guo, Chuan-Hao
    Guo, Yuan
    Liu, Bei-Bei
    ENTROPY, 2019, 21 (02):
  • [20] An Ant Colony Optimisation Approach to the Densest k-Subgraph Problem
    Tasnadi, Zoltan
    Gasko, Noemi
    2022 24TH INTERNATIONAL SYMPOSIUM ON SYMBOLIC AND NUMERIC ALGORITHMS FOR SCIENTIFIC COMPUTING, SYNASC, 2022, : 208 - 211