Existence, automatic continuity and invariant submodules of generalized derivations on modules

被引:0
|
作者
G. H. Esslamzadeh
H. Ghahramani
机构
[1] Shiraz University,Department of Mathematics, Faculty of Sciences
[2] University of Kurdistan,Department of Mathematics
来源
Aequationes mathematicae | 2012年 / 84卷
关键词
47B47; 46H40; 16W25; Generalized derivation; module;
D O I
暂无
中图分类号
学科分类号
摘要
Let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{A}}$$\end{document} be a \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{C}}$$\end{document} -algebra, δ be a derivation on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{A}}$$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{M}}$$\end{document} be a left \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{A}}$$\end{document} -module. A linear map \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\tau : \mathcal{M} \rightarrow \mathcal{M}}$$\end{document} is called a generalized derivation relative to δ if \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\tau(am)=a\tau(m)+\delta(a)m\,(a \in \mathcal{A}, m \in \mathcal{M})}$$\end{document}. In this article first we study the existence of generalized derivations. In particular we show that free modules and projective modules always have nontrivial generalized derivations relative to nonzero derivations of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{A}}$$\end{document}. Then we investigate the invariance of prime submodules under generalized derivations. Specifically we show that every minimal prime submodule of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{M}}$$\end{document} is invariant under every generalized derivation. Moreover we obtain analogs of Posner’s theorem for generalized derivations. In the case that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{A}}$$\end{document} is a Banach algebra and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{M}}$$\end{document} is a Banach left \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{A}}$$\end{document} -module, we study the existence of continuous generalized derivations and automatic continuity of generalized derivations.
引用
收藏
页码:185 / 200
页数:15
相关论文
共 50 条
  • [21] Categorical properties of generalized σ-derivations on modules
    Adrabi, Abderrahim
    Bennis, Driss
    Fahid, Brahim
    COMMUNICATIONS IN ALGEBRA, 2023, 51 (11) : 4754 - 4766
  • [22] Fully invariant submodules for constructing dual Rickart modules and dual Baer modules
    Amouzegar, Tayyabeh
    Hamzekolaee, Ali Reza Moniri
    Tercan, Adnan
    BULLETIN MATHEMATIQUE DE LA SOCIETE DES SCIENCES MATHEMATIQUES DE ROUMANIE, 2023, 66 (03): : 295 - 306
  • [23] Automatic continuity of (δ, ϵ)-double derivations on C∗-algebras
    Hosseini, Amin (hosseini.amin82@gmail.com), 1600, Politechnica University of Bucharest (79):
  • [24] AUTOMATIC CONTINUITY OF (δ, ε)-DOUBLE DERIVATIONS ON C*-ALGEBRAS
    Hosseini, Amin
    UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN-SERIES A-APPLIED MATHEMATICS AND PHYSICS, 2017, 79 (03): : 67 - 72
  • [25] Automatic continuity of higher derivations on JB*-algebras
    Hejazian, S.
    Shatery, T. L.
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2007, 33 (01) : 11 - 23
  • [26] Modules Whose St-Closed Submodules are Fully Invariant
    Abbas, Maysaa Riadh
    Ahmed, Muna Abbas
    BAGHDAD SCIENCE JOURNAL, 2025, 22 (03)
  • [27] Generating dual Baer modules via fully invariant submodules
    Calci, Tugce Pekacar
    Harmanci, Abdullah
    Ungor, Burcu
    QUAESTIONES MATHEMATICAE, 2019, 42 (08) : 1125 - 1139
  • [28] Modules in which semisimple fully invariant submodules are essential in summands
    Yasar, Ramazan
    TURKISH JOURNAL OF MATHEMATICS, 2019, 43 (05) : 2327 - 2336
  • [29] On reducing submodules of Hilbert modules with Gn-invariant kernels
    Biswas, Shibananda
    Ghosh, Gargi
    Misra, Gadadhar
    Roy, Subrata Shyam
    JOURNAL OF FUNCTIONAL ANALYSIS, 2019, 276 (03) : 751 - 784
  • [30] On Modules for Which All Submodules Are Projection Invariant and the Lifting Condition
    Abdioglu, C.
    Kosan, M. T.
    Sahinkaya, S.
    SOUTHEAST ASIAN BULLETIN OF MATHEMATICS, 2010, 34 (05) : 807 - 818