Matrix Hamiltonians with a chance of being complex symmetric

被引:0
|
作者
Miloslav Znojil
机构
[1] Nuclear Physics Institute,Department of Theoretical Physics
[2] ASCR,undefined
来源
Integral Equations and Operator Theory | 2012年 / 74卷
关键词
15Axx; 81Q12; PT-symmetric quantum mechanics; N-sited quantum chains; complex symmetric observables;
D O I
暂无
中图分类号
学科分类号
摘要
An explicit form of an isospectral mapping is sought between given, special real matrices and their arbitrary suitable complex symmetric avatars.
引用
收藏
页码:5 / 6
页数:1
相关论文
共 50 条
  • [41] Classical trajectories for complex Hamiltonians
    Bender, Carl M.
    Chen, Jun-Hua
    Darg, Daniel W.
    Milton, Kimball A.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2006, 39 (16): : 4219 - 4238
  • [42] WKB APPROXIMATION FOR GENERAL MATRIX HAMILTONIANS
    BJORKEN, JD
    ORBACH, HS
    PHYSICAL REVIEW D, 1981, 23 (10): : 2243 - 2251
  • [43] THE S-MATRIX FOR ABSORPTIVE HAMILTONIANS
    FESHBACH, H
    ANNALS OF PHYSICS, 1985, 165 (02) : 398 - 405
  • [44] Minimal realizations of supersymmetry for matrix Hamiltonians
    Andrianov, Alexander A.
    Sokolov, Andrey V.
    PHYSICS LETTERS A, 2015, 379 (04) : 279 - 283
  • [45] Numerical Methods to Solve the Complex Symmetric Stabilizing Solution of the Complex Matrix Equation X
    Yao, Yao
    Guo, Xiao-Xia
    JOURNAL OF MATHEMATICAL STUDY, 2015, 48 (01): : 53 - 65
  • [46] An algorithm for the matrix representation of ESR Hamiltonians
    Goncalves, WM
    Pontuschka, WM
    Sartorelli, JC
    COMPUTERS & CHEMISTRY, 1996, 20 (02): : 275 - 277
  • [47] Cliffordized NAC supersymmetry and PT-symmetric Hamiltonians
    Toppan, Francesco
    FORTSCHRITTE DER PHYSIK-PROGRESS OF PHYSICS, 2008, 56 (4-5): : 516 - 520
  • [48] Perpetual emulation threshold of PT-symmetric Hamiltonians
    Trypogeorgos, D.
    Valdes-Curiell, A.
    Spielman, I. B.
    Emary, C.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2018, 51 (32)
  • [49] Appropriate inner product for PT-symmetric Hamiltonians
    Mannheim, Philip D.
    PHYSICAL REVIEW D, 2018, 97 (04)
  • [50] Rellich’s theorem for spherically symmetric repulsive Hamiltonians
    Kyohei Itakura
    Mathematische Zeitschrift, 2019, 291 : 1435 - 1449