Quantum SU(2|1) supersymmetric ℂN Smorodinsky-Winternitz system

被引:0
|
作者
Evgeny Ivanov
Armen Nersessian
Stepan Sidorov
机构
[1] Bogoliubov Laboratory of Theoretical Physics,
[2] JINR,undefined
[3] Moscow Institute of Physics and Technology,undefined
[4] Yerevan Physics Institute,undefined
[5] Institute of Radiophysics and Electronics,undefined
来源
Journal of High Energy Physics | / 2021卷
关键词
Conformal and W Symmetry; Extended Supersymmetry; Supersymmetry Breaking;
D O I
暂无
中图分类号
学科分类号
摘要
We study quantum properties of SU(2|1) supersymmetric (deformed N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 4, d = 1 supersymmetric) extension of the superintegrable Smorodinsky-Winternitz system on a complex Euclidian space ℂN. The full set of wave functions is constructed and the energy spectrum is calculated. It is shown that SU(2|1) supersymmetry implies the bosonic and fermionic states to belong to separate energy levels, thus exhibiting the “even-odd” splitting of the spectra. The superextended hidden symmetry operators are also defined and their action on SU(2|1) multiplets of the wave functions is given. An equivalent description of the same system in terms of superconformal SU(2|1, 1) quantum mechanics is considered and a new representation of the hidden symmetry generators in terms of the SU(2|1, 1) ones is found.
引用
收藏
相关论文
共 50 条
  • [31] SU(2) reduction in N=4 supersymmetric mechanics
    Krivonos, Sergey
    Lechtenfeld, Olaf
    PHYSICAL REVIEW D, 2009, 80 (04):
  • [32] SU(2) CLASSIFICATION OF N = 2 COMPLEX SUPERSYMMETRIC REPRESENTATIONS
    SAIDI, EH
    JOURNAL OF MATHEMATICAL PHYSICS, 1988, 29 (09) : 1949 - 1957
  • [33] ON THE QUANTUM MODULI SPACE OF VACUA OF N=2 SUPERSYMMETRIC SU(N-C) GAUGE-THEORIES
    HANANY, A
    OZ, Y
    NUCLEAR PHYSICS B, 1995, 452 (1-2) : 283 - 312
  • [34] Supersymmetric SU(1|2) Gaudin model
    Cao, JP
    Hou, BY
    Yue, RH
    CHINESE PHYSICS, 2001, 10 (02): : 103 - 108
  • [35] Solutions of D=2 supersymmetric Yang-Mills quantum mechanics with SU(N) gauge group
    Korcyl, Piotr
    JOURNAL OF MATHEMATICAL PHYSICS, 2011, 52 (05)
  • [36] 2-LOOP-FINITE SUPERSYMMETRIC THEORIES OF SU(N)
    JIANG, XD
    ZHOU, XJ
    COMMUNICATIONS IN THEORETICAL PHYSICS, 1986, 5 (02) : 179 - 185
  • [37] SU(2) reductions in N=4 multidimensional supersymmetric mechanics
    Bellucci, Stefano
    Krivonos, Sergey
    Sutulin, Anton
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2012, 45 (12)
  • [38] SUPERSYMMETRIC INTEGRABLE SU(2/1) HEISENBERG MODELS
    MAKHANKOV, VG
    PASHAEV, OK
    PHYSICS LETTERS A, 1989, 141 (5-6) : 285 - 288
  • [39] SU(2|1) supersymmetric mechanics on curved spaces
    Nikolay Kozyrev
    Sergey Krivonos
    Olaf Lechtenfeld
    Anton Sutulin
    Journal of High Energy Physics, 2018
  • [40] SU(2|1) supersymmetric mechanics on curved spaces
    Kozyrev, Nikolay
    Krivonos, Sergey
    Lechtenfeld, Olaf
    Sutulin, Anton
    JOURNAL OF HIGH ENERGY PHYSICS, 2018, (05):