Subadditivity Inequalities in von Neumann Algebras and Characterization of Tracial Functionals

被引:0
|
作者
O. E. Tikhonov
机构
[1] Kazan State University,Research Institute of Mathematics and Mechanics
来源
Positivity | 2005年 / 9卷
关键词
algebra of matrices; functional calculus; positive normal functional; subadditivity inequality; tracial functional; von Neumann algebra; 46L30; 15A45;
D O I
暂无
中图分类号
学科分类号
摘要
We examine under which assumptions on a positive normal functional φ on a von Neumann algebra, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\cal M}$$\end{document} and a Borel measurable function f: R+ → R with f(0) = 0 the subadditivity inequality φ (f(A+B)) ≤ φ(f(A))+φ (f (B)) holds true for all positive operators A, B in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\cal M}$$\end{document}. A corresponding characterization of tracial functionals among positive normal functionals on a von Neumann algebra is presented.
引用
收藏
页码:259 / 264
页数:5
相关论文
共 50 条
  • [21] The Peierls-Bogoliubov Inequality in C*-Algebras and Characterization of Tracial Functionals
    Bikchentaev, Airat M.
    LOBACHEVSKII JOURNAL OF MATHEMATICS, 2011, 32 (03) : 175 - 179
  • [22] Quantum convolution inequalities on Frobenius von Neumann algebras
    Linzhe Huang
    Zhengwei Liu
    Jinsong Wu
    Science China(Mathematics), 2025, 68 (03) : 615 - 636
  • [23] A characterization of (σ, τ) - Derivations on von Neumann algebras
    Gordji, Madjid Eshaghi
    UPB Scientific Bulletin, Series A: Applied Mathematics and Physics, 2011, 73 (01): : 111 - 116
  • [24] Inequalities for positive module operators on von Neumann algebras
    Choi, Byoung Jin
    Ji, Un Cig
    Lim, Yongdo
    JOURNAL OF MATHEMATICAL PHYSICS, 2018, 59 (06)
  • [25] Quantum convolution inequalities on Frobenius von Neumann algebras
    Huang, Linzhe
    Liu, Zhengwei
    Wu, Jinsong
    SCIENCE CHINA-MATHEMATICS, 2025, 68 (03) : 615 - 636
  • [26] A characterization of atomic von Neumann algebras
    Debabrata De
    Kunal Mukherjee
    Proceedings - Mathematical Sciences, 132
  • [27] A CHARACTERIZATION OF (σ, τ)- DERIVATIONS ON VON NEUMANN ALGEBRAS
    Gordji, Madjid Eshaghi
    UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN-SERIES A-APPLIED MATHEMATICS AND PHYSICS, 2011, 73 (01): : 111 - 116
  • [28] A characterization of atomic von Neumann algebras
    De, Debabrata
    Mukherjee, Kunal
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2022, 132 (02):
  • [29] Tracial gauge norms on finite von Neumann algebras satisfying the weak Dixmier property
    Fang, Junsheng
    Hadwin, Don
    Nordgren, Eric
    Shen, Junhao
    JOURNAL OF FUNCTIONAL ANALYSIS, 2008, 255 (01) : 142 - 183
  • [30] Superadditivity and subadditivity of some functionals with applications to inequalities
    Dragomir, S. S.
    CARPATHIAN JOURNAL OF MATHEMATICS, 2014, 30 (01) : 71 - 78