Almost Kähler-Einstein Structures on 8-Dimensional Walker Manifolds

被引:0
|
作者
Yasuo Matsushita
Seiya Haze
Peter R. Law
机构
[1] University of Shiga Prefecture,
[2] Matsubara,undefined
[3] University of California,undefined
来源
关键词
2000 Mathematics Subject Classification: 53C50, 32Q20; 32Q60; Key words: Counterexamples to Goldberg conjecture, neutral metrics, Walker manifolds, 8-dimension, Einstein metrics, almost Kähler-Einstein metrics, Kähler-Einstein metrics;
D O I
暂无
中图分类号
学科分类号
摘要
We study almost Kähler-Einstein structures on 8-dimensional Walker manifolds, i.e., pseudo-Riemannian 8-manifolds admitting a field of parallel null 4-planes, whence the metric is of neutral signature. We construct on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\Bbb R}^8$\end{document} explicit almost Kähler-Einstein Walker metrics which are not Kähler. An appropriate restriction induces examples of such metrics on the 8-torus, thereby producing a counterexample to Goldberg’s conjecture in the case of neutral signature.
引用
收藏
相关论文
共 50 条
  • [21] Khler-Einstein surface and symmetric space
    CHEN DaGuang1
    2Department of Mathematics
    3Hua Loo-Keng Key Laboratory of Mathematics
    Science China Mathematics, 2011, (12) : 2627 - 2634
  • [22] Ricci flow on Kähler-Einstein surfaces
    X.X. Chen
    G. Tian
    Inventiones mathematicae, 2002, 147 : 487 - 544
  • [23] Homogeneous almost-Kähler manifolds and the Chern–Einstein equation
    Dmitri V. Alekseevsky
    Fabio Podestà
    Mathematische Zeitschrift, 2020, 296 : 831 - 846
  • [24] Twisted Kähler-Einstein metrics in big classes
    Darvas, Tamas
    Zhang, Kewei
    COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2024, 77 (12) : 4289 - 4327
  • [25] Moving Symplectic Curves in Kähler-Einstein Surfaces
    Chen J.
    Tian G.
    Acta Mathematica Sinica, 2000, 16 (4) : 541 - 548
  • [26] Kähler-Einstein metrics on families of Fano varieties
    Pan, Chung-Ming
    Trusiani, Antonio
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2025, 2025 (819): : 45 - 87
  • [27] Compatible Almost Complex Structures on Quaternion Kähler Manifolds
    D. V. Alekseevsky
    S. Marchiafava
    M. Pontecorvo
    Annals of Global Analysis and Geometry, 1998, 16 : 419 - 444
  • [28] Twisted Kähler-Einstein metrics on flag varieties
    Correa, Eder M.
    Grama, Lino
    MATHEMATISCHE NACHRICHTEN, 2024, 297 (11) : 4273 - 4287
  • [29] Kähler-Einstein metrics with positive scalar curvature
    Gang Tian
    Inventiones mathematicae, 1997, 130 : 1 - 37
  • [30] Asymptotic expansions of complete K?hler-Einstein metrics with finite volume on quasi-projective manifolds
    Xumin Jiang
    Yalong Shi
    ScienceChina(Mathematics), 2022, 65 (09) : 1953 - 1974