Almost Kähler-Einstein Structures on 8-Dimensional Walker Manifolds

被引:0
|
作者
Yasuo Matsushita
Seiya Haze
Peter R. Law
机构
[1] University of Shiga Prefecture,
[2] Matsubara,undefined
[3] University of California,undefined
来源
关键词
2000 Mathematics Subject Classification: 53C50, 32Q20; 32Q60; Key words: Counterexamples to Goldberg conjecture, neutral metrics, Walker manifolds, 8-dimension, Einstein metrics, almost Kähler-Einstein metrics, Kähler-Einstein metrics;
D O I
暂无
中图分类号
学科分类号
摘要
We study almost Kähler-Einstein structures on 8-dimensional Walker manifolds, i.e., pseudo-Riemannian 8-manifolds admitting a field of parallel null 4-planes, whence the metric is of neutral signature. We construct on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\Bbb R}^8$\end{document} explicit almost Kähler-Einstein Walker metrics which are not Kähler. An appropriate restriction induces examples of such metrics on the 8-torus, thereby producing a counterexample to Goldberg’s conjecture in the case of neutral signature.
引用
收藏
相关论文
共 50 条
  • [1] Almost Kahler-Einstein structures on 8-dimensional Walker manifolds
    Matsushita, Yasuo
    Haze, Seiya
    Law, Peter R.
    MONATSHEFTE FUR MATHEMATIK, 2007, 150 (01): : 41 - 48
  • [2] Four-Dimensional Almost Kähler Einstein and *-Einstein Manifolds
    Takashi Oguro
    Kouei Sekigawa
    Geometriae Dedicata, 1998, 69 : 91 - 112
  • [3] Deformation of conic negative Kähler-Einstein manifolds
    Yan Li
    Frontiers of Mathematics in China, 2017, 12 : 597 - 606
  • [4] Compact indefinite almost Kähler Einstein manifolds
    Kouei Sekigawa
    Akira Yamada
    Geometriae Dedicata, 2008, 132 : 65 - 79
  • [5] 8-dimensional Einstein-Thorpe manifolds
    Kim, J
    JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY SERIES A-PURE MATHEMATICS AND STATISTICS, 2000, 68 : 278 - 284
  • [6] RIGIDITY THEOREMS OF COMPLETE K?HLER-EINSTEIN MANIFOLDS AND COMPLEX SPACE FORMS
    种田
    东瑜昕
    林和子
    任益斌
    Acta Mathematica Scientia, 2019, 39 (02) : 339 - 356
  • [7] Rigidity Theorems of Complete Kähler-Einstein Manifolds and Complex Space Forms
    Tian Chong
    Yuxin Dong
    Hezi Lin
    Yibin Ren
    Acta Mathematica Scientia, 2019, 39 : 339 - 356
  • [8] Convergence of Kähler-Einstein orbifolds
    Natasa Sesum
    The Journal of Geometric Analysis, 2004, 14 : 171 - 184
  • [9] L°° ESTIMATES FOR K ÄHLER-RICCI FLOW ON KÄHLER-EINSTEIN FANO MANIFOLDS: A NEW DERIVATION
    Jian, Wangjian
    Shi, Yalong
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2024, 152 (03) : 1279 - 1286
  • [10] Kähler Geometry of Scalar Flat Metrics on Line Bundles Over Polarized Kähler-Einstein Manifolds
    Cristofori, Simone
    Zedda, Michela
    JOURNAL OF GEOMETRIC ANALYSIS, 2024, 34 (06)