Parameter Estimation for Optimal Object Recognition: Theory and Application

被引:0
|
作者
Stan Z. Li
机构
关键词
Image Processing; Parameter Estimation; Artificial Intelligence; Computer Vision; Promising Result;
D O I
暂无
中图分类号
学科分类号
摘要
Object recognition systems involve parameters such as thresholds, bounds and weights. These parameters have to be tuned before the system can perform successfully. A common practice is to choose such parameters manually on an ad hoc basis, which is a disadvantage. This paper presents a novel theory of parameter estimation for optimization-based object recognition where the optimal solution is defined as the global minimum of an energy function. The theory is based on supervised learning from examples. Correctness and instability are established as criteria for evaluating the estimated parameters. A correct estimate enables the labeling implied in each exemplary configuration to be encoded in a unique global energy minimum. The instability is the ease with which the minimum is replaced by a non-exemplary configuration after a perturbation. The optimal estimate minimizes the instability. Algorithms are presented for computing correct and minimal-instability estimates. The theory is applied to the parameter estimation for MRF-based recognition and promising results are obtained.
引用
收藏
页码:207 / 222
页数:15
相关论文
共 50 条
  • [31] Parameter Estimation Based on Set-valued Signals:Theory and Application
    Ting WANG
    Hang ZHANG
    Yan-long ZHAO
    ActaMathematicaeApplicataeSinica, 2019, 35 (02) : 255 - 263
  • [32] Parameter estimation and its application using non-statistical theory
    Xia Xintao
    Chen Xiaoyang
    Wang Zhongyu
    Zhang Yongzhen
    SIGNAL ANALYSIS, MEASUREMENT THEORY, PHOTO-ELECTRONIC TECHNOLOGY, AND ARTIFICIAL INTELLIGENCE, PTS 1 AND 2, 2006, 6357
  • [33] Optimal estimation of reliability parameter for inverse Pareto distribution with application to insurance data
    Joshi, Neeraj
    Bapat, Sudeep R.
    Sengupta, Raghu Nandan
    INTERNATIONAL JOURNAL OF QUALITY & RELIABILITY MANAGEMENT, 2024, 41 (07) : 1811 - 1837
  • [34] Pose estimation in automatic object recognition
    Chang, CY
    Hoepner, R
    OPTICAL PATTERN RECOGNITION VII, 1996, 2752 : 233 - 240
  • [35] STOCHASTIC BOUNDARY ESTIMATION AND OBJECT RECOGNITION
    COOPER, DB
    ELLIOTT, H
    COHEN, F
    REISS, L
    SYMOSEK, P
    COMPUTER GRAPHICS AND IMAGE PROCESSING, 1980, 12 (04): : 326 - 356
  • [36] ESTIMATION THEORY OF LOCATION PARAMETER
    KAGAN, AM
    SANKHYA-THE INDIAN JOURNAL OF STATISTICS SERIES A, 1966, 28 (DEC): : 335 - 352
  • [37] Parameter estimation and optimal experimental design
    Banga, Julio R.
    Balsa-Canto, Eva
    ESSAYS IN BIOCHEMISTRY: SYSTEMS BIOLOGY, VOL 45, 2008, 45 : 195 - 209
  • [38] Optimal Control and Stochastic Parameter Estimation
    Ngnepieba, Pierre
    Hussaini, M. Y.
    Debreu, Laurent
    MONTE CARLO METHODS AND APPLICATIONS, 2006, 12 (5-6): : 461 - 476
  • [39] Optimal parameter estimation of Pauli channels
    Ruppert, Laszlo
    Virosztek, Daniel
    Hangos, Katalin
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2012, 45 (26)
  • [40] Optimal parameter estimation of a depolarizing channel
    Sasaki, M
    Ban, M
    Barnett, SM
    PHYSICAL REVIEW A, 2002, 66 (02):