On the Schwarz derivative, the Bloch space and the Dirichlet space

被引:0
|
作者
J. Oscar González Cervantes
机构
[1] E.S.F.M - I.P.N.,Instituto Politécnico Nacional
来源
Mathematical Sciences | 2020年 / 14卷
关键词
Schwarz derivative; Bloch space; Dirichlet space; Primary 97I80; Secondary 46E30;
D O I
暂无
中图分类号
学科分类号
摘要
It is well known the connection between the growth of the Schwarzian with both the univalence [see Beardon and Gehring (Comment Math Helv 55: 50–64, 1980), Nehari (Bull Am Math Soc 55:545–551, 1949), Ovesea (Novi Sad J Math 26(1):69–76, 1996)] and the quasiconformal extension of the function [see Ahlfors and Weill (Proc Am Math Soc 13:975–978, 1962), Osgood (Old and new on the Schwarzian derivative, Quasiconformal mappings and analysis. Springer, New York, 1998)]. This work shows that previous relationships have geometrical interpretations when the Schwarzian is applied on the Bloch space and on the Dirichlet space. These interpretations are given in terms of a family of three-dimensional cones. Even more, these function spaces allow us to obtain Möbius invariant properties related to the norm induced by the Schwarzian among other consequences.
引用
收藏
页码:235 / 240
页数:5
相关论文
共 50 条
  • [42] WEIGHTED BERGMAN SPACES, BLOCH SPACE AND DING SPACE
    XIAO, ZJ
    ACTA MATHEMATICA SCIENTIA, 1989, 9 (03) : 265 - 276
  • [43] Wandering Subspaces of the Bergman Space and the Dirichlet Space Over
    Chattopadhyay, Arup
    Das, B. Krishna
    Sarkar, Jaydeb
    Sarkar, S.
    INTEGRAL EQUATIONS AND OPERATOR THEORY, 2014, 79 (04) : 567 - 577
  • [44] DIRICHLET SPACE ON AN INFINITE DIMENSIONAL HILBERT-SPACE
    PACLET, P
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1979, 288 (21): : 981 - 983
  • [46] Carleson measures for the Bloch space
    Girela, Daniel
    Angel Pelaez, Jose
    Perez-Gonzalez, Fernando
    Rattya, Jouni
    INTEGRAL EQUATIONS AND OPERATOR THEORY, 2008, 61 (04) : 511 - 547
  • [47] BLOCH OSCILLATIONS IN FREE SPACE
    CHURCHILL, JN
    HOLMSTROM, FE
    PHYSICS LETTERS A, 1990, 143 (1-2) : 20 - 24
  • [48] Interpolation by functions in the Bloch space
    Boe, B
    Nicolau, A
    JOURNAL D ANALYSE MATHEMATIQUE, 2004, 94 (1): : 171 - 194
  • [49] EXTREMAL PROPERTY OF THE BLOCH SPACE
    RUBEL, LA
    TIMONEY, RM
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1979, 75 (01) : 45 - 49
  • [50] Carleson Measures for the Bloch Space
    Daniel Girela
    José Ángel Peláez
    Fernando Pérez-González
    Jouni Rättyä
    Integral Equations and Operator Theory, 2008, 61 : 511 - 547