On the Schwarz derivative, the Bloch space and the Dirichlet space

被引:0
|
作者
J. Oscar González Cervantes
机构
[1] E.S.F.M - I.P.N.,Instituto Politécnico Nacional
来源
Mathematical Sciences | 2020年 / 14卷
关键词
Schwarz derivative; Bloch space; Dirichlet space; Primary 97I80; Secondary 46E30;
D O I
暂无
中图分类号
学科分类号
摘要
It is well known the connection between the growth of the Schwarzian with both the univalence [see Beardon and Gehring (Comment Math Helv 55: 50–64, 1980), Nehari (Bull Am Math Soc 55:545–551, 1949), Ovesea (Novi Sad J Math 26(1):69–76, 1996)] and the quasiconformal extension of the function [see Ahlfors and Weill (Proc Am Math Soc 13:975–978, 1962), Osgood (Old and new on the Schwarzian derivative, Quasiconformal mappings and analysis. Springer, New York, 1998)]. This work shows that previous relationships have geometrical interpretations when the Schwarzian is applied on the Bloch space and on the Dirichlet space. These interpretations are given in terms of a family of three-dimensional cones. Even more, these function spaces allow us to obtain Möbius invariant properties related to the norm induced by the Schwarzian among other consequences.
引用
收藏
页码:235 / 240
页数:5
相关论文
共 50 条
  • [1] On the Schwarz derivative, the Bloch space and the Dirichlet space
    Gonzalez Cervantes, J. Oscar
    MATHEMATICAL SCIENCES, 2020, 14 (03) : 235 - 240
  • [2] MULTIPLIERS OF DIRICHLET SUBSPACES OF THE BLOCH SPACE
    Chatzifountas, Christos
    Girela, Daniel
    Angel Pelaez, Jose
    JOURNAL OF OPERATOR THEORY, 2014, 72 (01) : 159 - 191
  • [3] THE CLOSURE OF DIRICHLET SPACES IN THE BLOCH SPACE
    Galanopoulos, Petros
    Girela, Daniel
    ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2019, 44 : 91 - 101
  • [4] On the Closures of Dirichlet Type Spaces in the Bloch Space
    Bao, Guanlong
    Gogus, Nihat Gokhan
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2019, 13 (01) : 45 - 59
  • [5] Composition Operators on Dirichlet Spaces and Bloch Space
    Yuan CHENG
    Sanjay KUMAR
    Ze Hua ZHOU
    ActaMathematicaSinica(EnglishSeries), 2014, 30 (10) : 1775 - 1784
  • [6] Composition operators on Dirichlet spaces and Bloch space
    Yuan Cheng
    Sanjay Kumar
    Ze Hua Zhou
    Acta Mathematica Sinica, English Series, 2014, 30 : 1775 - 1784
  • [7] On the Closures of Dirichlet Type Spaces in the Bloch Space
    Guanlong Bao
    Nihat Gökhan Göğüş
    Complex Analysis and Operator Theory, 2019, 13 : 45 - 59
  • [8] Composition Operators on Dirichlet Spaces and Bloch Space
    Cheng, Yuan
    Kumar, Sanjay
    Zhou, Ze Hua
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2014, 30 (10) : 1775 - 1784
  • [9] Fractional Derivative Description of the Bloch Space
    Moreno, alvaro Miguel
    Pelaez, Jose Angel
    de la Rosa, Elena
    POTENTIAL ANALYSIS, 2024, 61 (03) : 555 - 571
  • [10] MULTIPLIERS OF DIRICHLET-TYPE SUBSPACES OF BLOCH SPACE
    Li, Songxiao
    Lou, Zengjian
    Shen, Conghui
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2020, 57 (02) : 429 - 441