Laguerre expansion on the Heisenberg group and Fourier-Bessel transform on ℂn

被引:0
|
作者
Der-Chen Chang
Peter Griener
Jingzhi Tie
机构
[1] Georgetown University,Department of Mathematics
[2] University of Toronto,Department of Mathematics
[3] University of Georgia,Department of Mathematics
来源
关键词
Heisenberg group; Fourier transform; Laguerre expansion; Bessel functions; Poisson sum; Dirichlet kernel; 33C45; 43A80; 47G10;
D O I
暂无
中图分类号
学科分类号
摘要
Given a principal value convolution on the Heisenberg group Hn = ℂn × ℝ, we study the relation between its Laguerre expansion and the Fourier-Bessel expansion of its limit on ℂn. We also calculate the Dirichlet kernel for the Laguerre expansion on the group Hn.
引用
收藏
页码:1722 / 1739
页数:17
相关论文
共 50 条
  • [31] Full Fourier-Bessel transform and the algebra of singular pseudodifferential operators
    V. V. Katrakhov
    L. N. Lyakhov
    Differential Equations, 2011, 47 : 681 - 695
  • [32] Speech coding using Fourier-Bessel expansion of speech signals
    Gopalan, K
    IECON'01: 27TH ANNUAL CONFERENCE OF THE IEEE INDUSTRIAL ELECTRONICS SOCIETY, VOLS 1-3, 2001, : 2199 - 2203
  • [33] On Recovery of the Singular Differential Laplace-Bessel Operator from the Fourier-Bessel Transform
    Sitnik, Sergey M.
    Fedorov, Vladimir E.
    Polovinkina, Marina V.
    Polovinkin, Igor P.
    MATHEMATICS, 2023, 11 (05)
  • [34] Fourier-Bessel series expansion based empirical wavelet transform for analysis of non-stationary signals
    Bhattacharyya, Abhijit
    Singh, Lokesh
    Pachori, Ram Bilas
    DIGITAL SIGNAL PROCESSING, 2018, 78 : 185 - 196
  • [35] On Fourier, Fourier-Bessel and Radon transformations
    Kipriyanov, IA
    Lyakhov, LN
    DOKLADY AKADEMII NAUK, 1998, 360 (02) : 157 - 160
  • [36] Generalized Fourier-Bessel Transform of (eta, gamma)-Bessel-Lipschitz Functions in the Space L-a,n(P)
    El Ouadih, Salah
    Daher, Radouan
    MATEMATIKA, 2015, 31 (02) : 143 - 148
  • [37] On estimates for the Fourier-Bessel integral transform in the space L2(ℝ+)
    V. A. Abilov
    F. V. Abilova
    M. K. Kerimov
    Computational Mathematics and Mathematical Physics, 2009, 49 : 1103 - 1110
  • [38] The heat semigroups and uncertainty principles related to canonical Fourier-Bessel transform
    Ghazouani, Sami
    Sahbani, Jihed
    JOURNAL OF PSEUDO-DIFFERENTIAL OPERATORS AND APPLICATIONS, 2024, 15 (02)
  • [39] ON THE COEFFICIENTS OF THE FOURIER-BESSEL SERIES
    BETANCOR, JJ
    BARRIOS, JA
    UTILITAS MATHEMATICA, 1994, 46 : 207 - 217
  • [40] Conjugacy for Fourier-Bessel expansions
    Ciaurri, Oscar
    Stempak, Krzysztof
    STUDIA MATHEMATICA, 2006, 176 (03) : 215 - 247