DRL-based Task and Computational Offloading for Internet of Vehicles in Decentralized Computing

被引:0
|
作者
Ziyang Zhang
Keyu Gu
Zijie Xu
机构
[1] Brunel University London,Department of Mathematics
来源
Journal of Grid Computing | 2024年 / 22卷
关键词
Computational Offloading; Internet of vehicles; Task management; Deep reinforcement learning; Decentralized Framework; Mobile edge computing;
D O I
暂无
中图分类号
学科分类号
摘要
This paper focuses on the problem of computation offloading in a high-mobility Internet of Vehicles (IoVs) environment. The goal is to address the challenges related to latency, energy consumption, and payment cost requirements. The approach considers both moving and parked vehicles as fog nodes, which can assist in offloading computational tasks. However, as the number of vehicles increases, the action space for each agent grows exponentially, posing a challenge for decentralised decision-making. The dynamic nature of vehicular mobility further complicates the network dynamics, requiring joint cooperative behaviour from the learning agents to achieve convergence. The traditional deep reinforcement learning (DRL) approach for offloading in IoVs treats each agent as an independent learner. It ignores the actions of other agents during the training process. This paper utilises a cooperative three-layer decentralised architecture called Vehicle-Assisted Multi-Access Edge Computing (VMEC) to overcome this limitation. The VMEC network consists of three layers: the fog, cloudlet, and cloud layers. In the fog layer, vehicles within associated Roadside Units (RSUs) and neighbouring RSUs participate as fog nodes. The middle layer comprises Mobile Edge Computing (MEC) servers, while the top layer represents the cloud infrastructure. To address the dynamic task offloading problem in VMEC, the paper proposes using a Decentralized Framework of Task and Computational Offloading (DFTCO), which utilises the strength of MADRL and NOMA techniques. This approach considers multiple agents making offloading decisions simultaneously and aims to find the optimal matching between tasks and available resources.
引用
收藏
相关论文
共 50 条
  • [21] Task Offloading Method of Internet of Vehicles Based on Cloud-Edge Computing
    Sun, Yilong
    Wu, Zhiyong
    Shi, Dayin
    Hu, Xiuwei
    2022 IEEE INTERNATIONAL CONFERENCE ON SERVICES COMPUTING (IEEE SCC 2022), 2022, : 315 - 320
  • [22] Distributed DRL-Based Computation Offloading Scheme for Improving QoE in Edge Computing Environments
    Park, Jinho
    Chung, Kwangsue
    SENSORS, 2023, 23 (08)
  • [23] Achieving Fast Environment Adaptation of DRL-Based Computation Offloading in Mobile Edge Computing
    Hu, Zheyuan
    Niu, Jianwei
    Ren, Tao
    Guizani, Mohsen
    IEEE TRANSACTIONS ON MOBILE COMPUTING, 2024, 23 (05) : 6347 - 6362
  • [24] Task Offloading Strategy Based on Reinforcement Learning Computing in Edge Computing Architecture of Internet of Vehicles
    Wang, Kun
    Wang, Xiaofeng
    Liu, Xuan
    Jolfaei, Alireza
    IEEE ACCESS, 2020, 8 : 173779 - 173789
  • [25] DRL-based computing offloading approach for large-scale heterogeneous tasks in mobile edge computing
    He, Bingkun
    Li, Haokun
    Chen, Tong
    CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2024, 36 (19):
  • [26] Adaptive DRL-Based Task Scheduling for Energy-Efficient Cloud Computing
    Kang, Kaixuan
    Ding, Ding
    Xie, Huamao
    Yin, Qian
    Zeng, Jing
    IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, 2022, 19 (04): : 4948 - 4961
  • [27] Cloud-Fog Collaborative Computing Based Task Offloading Strategy in Internet of Vehicles
    Zhu, Chunhua
    Liu, Chong
    Zhu, Hai
    Li, Jingtao
    ELECTRONICS, 2024, 13 (12)
  • [28] Mobile Edge Computing Task Offloading Strategy Based on Parking Cooperation in the Internet of Vehicles
    Shen, Xianhao
    Chang, Zhaozhan
    Niu, Shaohua
    SENSORS, 2022, 22 (13)
  • [29] Task offloading method of edge computing in internet of vehicles based on deep reinforcement learning
    Zhang, Degan
    Cao, Lixiang
    Zhu, Haoli
    Zhang, Ting
    Du, Jinyu
    Jiang, Kaiwen
    CLUSTER COMPUTING-THE JOURNAL OF NETWORKS SOFTWARE TOOLS AND APPLICATIONS, 2022, 25 (02): : 1175 - 1187
  • [30] Task offloading method of edge computing in internet of vehicles based on deep reinforcement learning
    Degan Zhang
    Lixiang Cao
    Haoli Zhu
    Ting Zhang
    Jinyu Du
    Kaiwen Jiang
    Cluster Computing, 2022, 25 : 1175 - 1187