Invariant tori of linear countable systems of discrete equations given on an infinite-dimensional torus

被引:0
|
作者
Samoilenko A.M. [1 ]
Teplinskii Y.V. [2 ]
机构
[1] Ukrainian Academy of Sciences, Institute of Mathematics, Ukrainian Academy of Sciences, Kiev
[2] Kamenets-Podol'sk Pedagogic Institute, Kamenets-Podol'sk
关键词
Difference Equation; Weak Sense; Discrete Equation; Countable System; Invariant Torus;
D O I
10.1007/BF02513451
中图分类号
学科分类号
摘要
We study the problem of existence and uniqueness of invariant toroidal manifolds of countable systems of linear equations given on an infinite-dimensional torus. © 1998 Plenum Publishing Corporation.
引用
收藏
页码:278 / 286
页数:8
相关论文
共 50 条
  • [31] OPTIMAL INPUT-OUTPUT STABILIZATION OF INFINITE-DIMENSIONAL DISCRETE TIME-INVARIANT LINEAR SYSTEMS BY OUTPUT INJECTION
    Opmeer, Mark R.
    Staffans, Olof J.
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2010, 48 (08) : 5084 - 5107
  • [32] Optimal Linear Filtering for Discrete-Time Systems With Infinite-Dimensional Measurements
    Varley, Maxwell M.
    Molloy, Timothy L.
    Nair, Girish N.
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2025, 70 (03) : 1637 - 1651
  • [33] Kalman Filtering for Discrete-Time Linear Systems with Infinite-Dimensional Observations
    Varley, Maxwell M.
    Molloy, Timothy L.
    Nair, Girish N.
    2022 AMERICAN CONTROL CONFERENCE, ACC, 2022, : 296 - 303
  • [34] THE TRUNCATION METHOD IN CONSTRUCTING INVARIANT TORI OF COUNTABLE SYSTEMS OF DIFFERENTIAL-EQUATIONS
    SAMOILENKO, AM
    TEPLINSKII, YV
    DIFFERENTIAL EQUATIONS, 1994, 30 (02) : 184 - 192
  • [35] Lipschitz functions on the infinite-dimensional torus
    Faifman, Dmitry
    Klartag, Bo'az
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2016, 18 (01)
  • [36] Cone criterion on an infinite-dimensional torus
    Glyzin, S. D.
    Kolesov, A. Yu.
    IZVESTIYA MATHEMATICS, 2024, 88 (06) : 1087 - 1118
  • [37] Maximal operators on the infinite-dimensional torus
    Kosz, Dariusz
    Martinez-Perales, Javier C.
    Paternostro, Victoria
    Rela, Ezequiel
    Roncal, Luz
    MATHEMATISCHE ANNALEN, 2023, 385 (3-4) : 95 - 95
  • [38] Expansive Endomorphisms on the Infinite-Dimensional Torus
    Glyzin, S. D.
    Kolesov, A. Yu.
    Rozov, N. Kh.
    FUNCTIONAL ANALYSIS AND ITS APPLICATIONS, 2020, 54 (04) : 241 - 256
  • [39] On differentiation of integrals in the infinite-dimensional torus
    Kosz, Dariusz
    STUDIA MATHEMATICA, 2021, 258 (01) : 103 - 119
  • [40] Maximal operators on the infinite-dimensional torus
    Dariusz Kosz
    Javier C. Martínez-Perales
    Victoria Paternostro
    Ezequiel Rela
    Luz Roncal
    Mathematische Annalen, 2023, 385 : 1 - 39