On the Riemann Boundary Value Problem for Null Solutions to Iterated Generalized Cauchy–Riemann Operator in Clifford Analysis

被引:0
|
作者
Paula Cerejeiras
Uwe Kähler
Min Ku
机构
[1] University of Aveiro,Department of Mathematics, Center for Research and Development in Mathematics and Applications
来源
Results in Mathematics | 2013年 / 63卷
关键词
30D10; 30G35; 32A25; 58A10; Clifford analysis; Riemann boundary value problems; Generalized Cauchy–Riemann operator; Poly-Cauchy type integral;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we consider a kind of Riemann boundary value problem (for short RBVP) for null solutions to the iterated generalized Cauchy–Riemann operator and the polynomially generalized Cauchy–Riemann operator, on the sphere of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{R}^{n+1}}$$\end{document} with Hölder-continuous boundary data. Making full use of the poly-Cauchy type integral operator in Clifford analysis, we give explicit integral expressions of solutions to this kind of boundary value problems over the sphere of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{R}^{n+1}}$$\end{document} . As special cases solutions of the corresponding boundary value problems for the classical poly-analytic and meta-analytic functions are also derived, respectively.
引用
收藏
页码:1375 / 1394
页数:19
相关论文
共 50 条
  • [21] Riemann Boundary Value Problems on the Sphere in Clifford Analysis
    Min Ku
    Uwe Kähler
    Daoshun Wang
    Advances in Applied Clifford Algebras, 2012, 22 : 365 - 390
  • [22] Riemann Boundary Value Problems on the Sphere in Clifford Analysis
    Ku, Min
    Kaehler, Uwe
    Wang, Daoshun
    ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2012, 22 (02) : 365 - 390
  • [23] On boundary behavior of solutions of the generalized Cauchy-Riemann equations
    Dolzhenko, EP
    Danchenko, VI
    VESTNIK MOSKOVSKOGO UNIVERSITETA SERIYA 1 MATEMATIKA MEKHANIKA, 1998, (03): : 16 - 25
  • [24] A Hilbert Boundary Value Problem for Generalised Cauchy–Riemann Equations
    Ammar Alsaedy
    Nikolai Tarkhanov
    Advances in Applied Clifford Algebras, 2017, 27 : 931 - 953
  • [25] COMPLEX BOUNDARY VALUE PROBLEMS FOR THE CAUCHY-RIEMANN OPERATOR ON A TRIANGLE
    Akel, Mohamed
    Hidan, Muajebah
    Abdalla, Mohamed
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2022, 30 (10)
  • [26] Reduction procedure for obtaining solutions of the scalar additive Jump problem and Riemann boundary value problem in vectorial Clifford analysis
    Castro, Carlos Daniel Tamayo
    Reyes, Juan Bory
    Blaya, Ricardo Abreu
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2024, 47 (11) : 8611 - 8625
  • [27] The Stability of Solutions to Generalized Riemann Boundary Value Problem when the curve perturbs
    Liu Hong-ai
    Shang Lin
    Wang Chuan-rong
    Shu Zhi-biao
    PROCEEDINGS OF THE 2010 INTERNATIONAL CONFERENCE ON APPLICATION OF MATHEMATICS AND PHYSICS, VOL 2: ADVANCES ON APPLIED MATHEMATICS AND COMPUTATION MATHEMATICS, 2010, : 1 - 5
  • [28] On Riemann Boundary-Value Problem for Regular Functions in Clifford Algebras
    Kuznetsov S.P.
    Mochalov V.V.
    Chuev V.P.
    Russian Mathematics, 2018, 62 (1) : 36 - 49
  • [29] ON RIEMANN BOUNDARY VALUE PROBLEM FOR REGULAR FUNCTION WITH VALUESIIN A CLIFFORD ALGEBRA
    徐振远
    ScienceBulletin, 1987, (18) : 1294 - 1295
  • [30] Schwarz boundary-value problems for solutions of a generalized Cauchy–Riemann system with a singular line
    Plaksa S.A.
    Journal of Mathematical Sciences, 2020, 244 (1) : 36 - 46