A novel and accurate deep learning-based Covid-19 diagnostic model for heart patients

被引:0
|
作者
Ahmed Hassan
Mohamed Elhoseny
Mohammed Kayed
机构
[1] Beni-Suef University,Faculty of Science
[2] Mansoura University,Faculty of Computers and Information
[3] Beni-Suef University,Faculty of Computers and Artificial Intelligence
来源
关键词
Coronavirus; Electro diagrams; Deep learning; Heart patients;
D O I
暂无
中图分类号
学科分类号
摘要
Using radiographic changes of COVID-19 in the medical images, artificial intelligence techniques such as deep learning are used to extract some graphical features of COVID-19 and present a Covid-19 diagnostic tool. Differently from previous works that focus on using deep learning to analyze CT scans or X-ray images, this paper uses deep learning to scan electro diagram (ECG) images to diagnose Covid-19. Covid-19 patients with heart disease are the most people exposed to violent symptoms of Covid-19 and death. This shows that there is a special, unclear relation (until now) and parameters between covid-19 and heart disease. So, as previous works, using a general diagnostic model to detect covid-19 from all patients, based on the same rules, is not accurate as we prove later in the practical section of our paper because the model faces dispersion in the data during the training process. So, this paper aims to propose a novel model that focuses on diagnosing accurately Covid-19 for heart patients only to increase the accuracy and to reduce the waiting time of a heart patient to perform a covid-19 diagnosis. Also, we handle the only one existed dataset that contains ECGs of Covid-19 patients and produce a new version, with the help of a heart diseases expert, which consists of two classes: ECGs of heart patients with positive Covid-19 and ECGs of heart patients with negative Covid-19 cases. This dataset will help medical experts and data scientists to study the relation between Covid-19 and heart patients. We achieve overall accuracy, sensitivity and specificity 99.1%, 99% and 100%, respectively.
引用
收藏
页码:3397 / 3404
页数:7
相关论文
共 50 条
  • [21] A deep learning-based quantitative computed tomography model for predicting the severity of COVID-19: a retrospective study of 196 patients
    Shi, Weiya
    Peng, Xueqing
    Liu, Tiefu
    Cheng, Zenghui
    Lu, Hongzhou
    Yang, Shuyi
    Zhang, Jiulong
    Wang, Mei
    Gao, Yaozong
    Shi, Yuxin
    Zhang, Zhiyong
    Shan, Fei
    ANNALS OF TRANSLATIONAL MEDICINE, 2021, 9 (03)
  • [22] Machine Learning-Based Model to Predict the Disease Severity and Outcome in COVID-19 Patients
    Aljameel, Sumayh S.
    Khan, Irfan Ullah
    Aslam, Nida
    Aljabri, Malak
    Alsulmi, Eman S.
    SCIENTIFIC PROGRAMMING, 2021, 2021
  • [23] A Novel Deep Learning Based Healthcare Model for COVID-19 Pandemic Stress Analysis
    Dumka, Ankur
    Verma, Parag
    Singh, Rajesh
    Bisht, Anil Kumar
    Anand, Divya
    Aljahdali, Hani Moaiteq
    Noya, Irene Delgado
    Obregon, Silvia Aparicio
    CMC-COMPUTERS MATERIALS & CONTINUA, 2022, 72 (03): : 6029 - 6044
  • [24] A deep learning-based COVID-19 automatic diagnostic framework using chest X-ray images
    Joshi, Rakesh Chandra
    Yadav, Saumya
    Pathak, Vinay Kumar
    Malhotra, Hardeep Singh
    Khokhar, Harsh Vardhan Singh
    Parihar, Anit
    Kohli, Neera
    Himanshu, D.
    Garg, Ravindra K.
    Bhatt, Madan Lal Brahma
    Kumar, Raj
    Singh, Naresh Pal
    Sardana, Vijay
    Burget, Radim
    Alippi, Cesare
    Travieso-Gonzalez, Carlos M.
    Dutta, Malay Kishore
    BIOCYBERNETICS AND BIOMEDICAL ENGINEERING, 2021, 41 (01) : 239 - 254
  • [25] A Novel Deep Learning-Based Classification Framework for COVID-19 Assisted with Weighted Average Ensemble Modeling
    Chakraborty, Gouri Shankar
    Batra, Salil
    Singh, Aman
    Muhammad, Ghulam
    Torres, Vanessa Yelamos
    Mahajan, Makul
    DIAGNOSTICS, 2023, 13 (10)
  • [26] Deep Learning Enables Accurate Diagnosis of Novel Coronavirus (COVID-19) With CT Images
    Song, Ying
    Zheng, Shuangjia
    Li, Liang
    Zhang, Xiang
    Zhang, Xiaodong
    Huang, Ziwang
    Chen, Jianwen
    Wang, Ruixuan
    Zhao, Huiying
    Chong, Yutian
    Shen, Jun
    Zha, Yunfei
    Yang, Yuedong
    IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2021, 18 (06) : 2775 - 2780
  • [27] Novel deep learning approach to model and predict the spread of COVID-19
    Ayris, Devante
    Imtiaz, Maleeha
    Horbury, Kye
    Williams, Blake
    Blackney, Mitchell
    See, Celine Shi Hui
    Shah, Syed Afaq Ali
    INTELLIGENT SYSTEMS WITH APPLICATIONS, 2022, 14
  • [28] The ensemble deep learning model for novel COVID-19 on CT images
    Zhou Tao
    Lu Huiling
    Yang Zaoli
    Qiu Shi
    Huo Bingqiang
    Dong Yali
    APPLIED SOFT COMPUTING, 2021, 98
  • [29] A multimodal deep learning-based drug repurposing approach for treatment of COVID-19
    Seyed Aghil Hooshmand
    Mohadeseh Zarei Ghobadi
    Seyyed Emad Hooshmand
    Sadegh Azimzadeh Jamalkandi
    Seyed Mehdi Alavi
    Ali Masoudi-Nejad
    Molecular Diversity, 2021, 25 : 1717 - 1730
  • [30] A clustering and graph deep learning-based framework for COVID-19 drug repurposing
    Bansal, Chaarvi
    Deepa, P. R.
    Agarwal, Vinti
    Chandra, Rohitash
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 249