SynTReN: a generator of synthetic gene expression data for design and analysis of structure learning algorithms

被引:0
|
作者
Tim Van den Bulcke
Koenraad Van Leemput
Bart Naudts
Piet van Remortel
Hongwu Ma
Alain Verschoren
Bart De Moor
Kathleen Marchal
机构
[1] ESAT-SCD,ISLab, Dept. Math. and Comp. Sc
[2] K.U.Leuven,Dept. of Genome Analysis
[3] University of Antwerp,undefined
[4] German Research Center for Biotechnology,undefined
[5] CMPG,undefined
[6] Dept. Microbial and Molecular Systems,undefined
来源
BMC Bioinformatics | / 7卷
关键词
Network Topology; Biological Network; Topological Characteristic; Average Path Length; Input Gene;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [31] Learning the structure of gene regulatory networks from time series gene expression data
    Haoni Li
    Nan Wang
    Ping Gong
    Edward J Perkins
    Chaoyang Zhang
    BMC Genomics, 12
  • [32] Learning structure in gene expression data using deep architectures, with an application to gene clustering
    Gupta, Aman
    Wang, Haohan
    Ganapathiraju, Madhavi
    PROCEEDINGS 2015 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE, 2015, : 1328 - 1335
  • [33] Stochastic algorithms for gene expression analysis
    Ohno-Machado, L
    Kuo, WP
    STOCHASTIC ALGORITHMS: FOUNDATIONS AND APPLICATIONS, 2003, 2827 : 39 - 49
  • [34] Genetic algorithms for gene expression analysis
    Keedwell, E
    Narayanan, A
    APPLICATIONS OF EVOLUTIONARY COMPUTING, 2003, 2611 : 76 - 86
  • [35] Novel Machine Learning Algorithms Improve the Design of Synthetic Promoters Resulting in More Selective and Higher Levels of Gene Expression in Muscle and Liver Cells
    Mourao, Kira
    Cooper, Sinclair
    Fraser, Ross M.
    Kippen, Nicolle
    Gonzales, Juan Manuel Iglesias
    Geurrini, Ileana
    DiSanto, Rachael
    Fraser, Amy
    Rajan, Rinku
    Yanez, Jorge O.
    Scialpi, Flavia
    Roberts, Michael L.
    MOLECULAR THERAPY, 2020, 28 (04) : 436 - 436
  • [36] Analysis and design of a versatile synthetic network for inducible gene expression in mammalian systems
    Polynikis, A.
    Cuccato, G.
    Criscuolo, S.
    Hogan, S. J.
    di Bernardo, M.
    di Bernardo, D.
    2010 BIOMEDICAL CIRCUITS AND SYSTEMS CONFERENCE (BIOCAS), 2010, : 182 - 185
  • [37] Comparison Analysis of Biclustering Algorithms with the Use of Artificial Data and Gene Expression Profiles
    Babichev, S.
    Lytvynenko, V.
    Voronenko, M.
    Osypenko, V.
    Korobchynskyi, M.
    2018 IEEE 38TH INTERNATIONAL CONFERENCE ON ELECTRONICS AND NANOTECHNOLOGY (ELNANO), 2018, : 298 - 304
  • [38] Emotional Analysis and Expression in Advertising Art Design Based on Deep Learning Algorithms
    Guo W.
    Ye H.
    Computer-Aided Design and Applications, 2024, 21 (S15): : 147 - 162
  • [39] In Silico Design of Synthetic Gene Network for Control of Gene Expression
    Mohamadabadi, S.
    Yazdi, M. Barkhordari
    2015 22ND IRANIAN CONFERENCE ON BIOMEDICAL ENGINEERING (ICBME), 2015, : 104 - 109
  • [40] Gene reduction and machine learning algorithms for cancer classification based on microarray gene expression data: A comprehensive review
    Osama, Sarah
    Shaban, Hassan
    Ali, Abdelmgeid A.
    EXPERT SYSTEMS WITH APPLICATIONS, 2023, 213