A Second-Order Boundary Condition Capturing Method for Solving the Elliptic Interface Problems on Irregular Domains

被引:0
|
作者
Hyuntae Cho
Heejae Han
Byungjoon Lee
Youngsoo Ha
Myungjoo Kang
机构
[1] Seoul National University,Department of Mathematical Sciences
[2] The Catholic University of Korea,Department of Mathematics
来源
Journal of Scientific Computing | 2019年 / 81卷
关键词
Elliptic interface problems; Irregular domains; Ghost fluid method; Level-set method; Finite difference method;
D O I
暂无
中图分类号
学科分类号
摘要
A second-order boundary condition capturing method is presented for the elliptic interface problem with jump conditions in the solution and its normal derivative. The proposed method is an extension of the work in Liu et al. (J Comput Phys 160(1):151–178, 2000) to a higher order. The motivation of proposed method is that the approximated value at the interface can be reconstructed by proper interpolation based on the level set representation from Gibou et al. (J Comput Phys 176(1):205–227, 2002). A second-order accurate method is constructed, both in the solution and its gradient, using second-order finite difference approximation. Several numerical results demonstrate that the proposed method is indeed second-order accurate in the solution and its gradient in the L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^{2}$$\end{document} and L∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^{\infty }$$\end{document} norms.
引用
收藏
页码:217 / 251
页数:34
相关论文
共 50 条