On the Stability of Realistic Three-Body Problems

被引:0
|
作者
Alessandra Celletti
Luigi Chierchia
机构
[1] Dipartimento di Matematica,
[2] Università dell'Aquila,undefined
[3] 67100—Coppito,undefined
[4] L'Aquila,undefined
[5] Italy.¶E-mail: celletti@axscaq.aquila.infn.it,undefined
[6] Dipartimento di Matematica,undefined
[7] Università: di Roma Tre,undefined
[8] Largo San Murialdo 1,undefined
[9] 00146 Roma,undefined
[10] Italy.¶E-mail: luigi@matrm3.mat.uniroma3.it,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We consider the system Sun—Jupiter—Ceres as an example of a planar, circular, restricted three-body problem and, after substituting the mass ratio of Jupiter/Sun (which is approximately 10-3) with a parameter \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document}, we prove the existence of stable quasi-periodic motions with frequencies close to the observed (average) frequencies reported in “The Astronomical Almanac” for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document}. The proof is “computer-assisted”.
引用
收藏
页码:413 / 449
页数:36
相关论文
共 50 条
  • [31] KAM Stability for a three-body problem of the Solar system
    Alessandra Celletti
    Luigi Chierchia
    Zeitschrift für angewandte Mathematik und Physik ZAMP, 2005, 57 : 33 - 41
  • [32] Equilibrium Configurations of Tethered Three-Body Systems and Their Stability
    Arun K. Misra
    The Journal of the Astronautical Sciences, 2002, 50 (3) : 241 - 253
  • [33] Stability of three-body bound states on the light front
    Beyer, M
    Mattiello, S
    Frederico, T
    Weber, HJ
    FEW-BODY SYSTEMS, 2003, 33 (2-3) : 89 - 97
  • [34] Equilibrium configurations of - Tethered three-body systems and their stability
    Misra, AK
    SPACEFLIGHT MECHANICS 2001, VOL 108, PTS 1 AND 2, 2001, 108 : 1757 - 1772
  • [35] Sundman surfaces and Hill stability in the three-body problem
    Luk'yanov, L. G.
    Shirmin, G. I.
    ASTRONOMY LETTERS-A JOURNAL OF ASTRONOMY AND SPACE ASTROPHYSICS, 2007, 33 (08): : 550 - 561
  • [36] Equilibrium configurations of tethered three-body systems and their stability
    Misra, AK
    JOURNAL OF THE ASTRONAUTICAL SCIENCES, 2002, 50 (03): : 241 - 253
  • [37] Quantum criticality and stability of three-body Coulomb systems
    Kais, S
    Shi, QC
    PHYSICAL REVIEW A, 2000, 62 (06): : 060502 - 060501
  • [38] Three-body force and Coulomb force in three-body systems
    Oryu, S.
    Hiratsuka, Y.
    Nishinohara, S.
    Gojuki, S.
    Chiba, S.
    NEW FACET OF THREE NUCLEON FORCE - 50 YEARS OF FUJITA MIYAZAWA THREE NUCLEON FORCE (FM 50), 2007, 1011 : 265 - +
  • [39] On the stability of the three classes of Newtonian three-body planar periodic orbits
    LI XiaoMing
    LIAO ShiJun
    Science China(Physics,Mechanics & Astronomy), 2014, Mechanics & Astronomy)2014 (11) : 2121 - 2126
  • [40] Atomic Three-Body Loss as a Dynamical Three-Body Interaction
    Daley, A. J.
    Taylor, J. M.
    Diehl, S.
    Baranov, M.
    Zoller, P.
    PHYSICAL REVIEW LETTERS, 2009, 102 (04)