On the Stability of Realistic Three-Body Problems

被引:0
|
作者
Alessandra Celletti
Luigi Chierchia
机构
[1] Dipartimento di Matematica,
[2] Università dell'Aquila,undefined
[3] 67100—Coppito,undefined
[4] L'Aquila,undefined
[5] Italy.¶E-mail: celletti@axscaq.aquila.infn.it,undefined
[6] Dipartimento di Matematica,undefined
[7] Università: di Roma Tre,undefined
[8] Largo San Murialdo 1,undefined
[9] 00146 Roma,undefined
[10] Italy.¶E-mail: luigi@matrm3.mat.uniroma3.it,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We consider the system Sun—Jupiter—Ceres as an example of a planar, circular, restricted three-body problem and, after substituting the mass ratio of Jupiter/Sun (which is approximately 10-3) with a parameter \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document}, we prove the existence of stable quasi-periodic motions with frequencies close to the observed (average) frequencies reported in “The Astronomical Almanac” for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document}. The proof is “computer-assisted”.
引用
收藏
页码:413 / 449
页数:36
相关论文
共 50 条
  • [1] On the stability of realistic three-body problems
    Celletti, A
    Chierchia, L
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1997, 186 (02) : 413 - 449
  • [2] Three-body monopole corrections to realistic interactions
    Zuker, AP
    PHYSICAL REVIEW LETTERS, 2003, 90 (04)
  • [3] Integrable three-body problems with two- and three-body interactions
    Komori, Y
    Hikami, K
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1997, 30 (06): : 1913 - 1923
  • [4] Quantum three-body problems
    马中骐
    Science China Mathematics, 2000, (10) : 1093 - 1107
  • [5] Quantum three-body problems
    Zhongqi Ma
    Science in China Series A: Mathematics, 2000, 43 : 1093 - 1107
  • [6] Quantum three-body problems
    Ma, ZQ
    SCIENCE IN CHINA SERIES A-MATHEMATICS PHYSICS ASTRONOMY, 2000, 43 (10): : 1093 - 1107
  • [7] Algebraic treatment of three-body problems
    Bijker, R
    Leviatan, A
    FEW-BODY SYSTEMS, 1998, 25 (1-3) : 89 - 100
  • [8] Algebraic Treatment of Three-Body Problems
    R. Bijker
    A. Leviatan
    Few-Body Systems, 1998, 25 : 89 - 100
  • [9] Dynamics and stability of three-body systems
    Mardling, R
    Aarseth, S
    DYNAMICS OF SMALL BODIES IN THE SOLAR SYSTEM: A MAJOR KEY TO SOLAR SYSTEM STUDIES, 1999, 522 : 385 - 392
  • [10] Stability in the general three-body problem
    Mardling, RA
    EVOLUTION OF BINARY AND MULTIPLE STAR SYSTEMS: A MEETING IN CELEBRATION OF PETER EGGLETON'S 60TH BIRTHDAY, 2001, 229 : 101 - 116