Wavepackets in Inhomogeneous Periodic Media: Propagation Through a One-Dimensional Band Crossing

被引:0
|
作者
Alexander Watson
Michael I. Weinstein
机构
[1] Duke University,Department of Mathematics
[2] Columbia University,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We consider a model of an electron in a crystal moving under the influence of an external electric field: Schrödinger’s equation in one spatial dimension with a potential which is the sum of a periodic function V and a smooth function W. We assume that the period of V is much shorter than the scale of variation of W and denote the ratio of these scales by ϵ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\epsilon}$$\end{document}. We consider the dynamics of semiclassical wavepacket asymptotic (in the limit ϵ↓0)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\epsilon\downarrow 0)}$$\end{document} solutions which are spectrally localized near to a crossing of two Bloch band dispersion functions of the periodic operator -12∂z2+V(z)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${-\frac{1}{2} \partial^{2}_ {z} +V(z)}$$\end{document}. We show that the dynamics is qualitatively different from the case where bands are well-separated: at the time the wavepacket is incident on the band crossing, a second wavepacket is ‘excited’ which has opposite group velocity to the incident wavepacket. We then show that our result is consistent with the solution of a ‘Landau–Zener’-type model.
引用
收藏
页码:655 / 698
页数:43
相关论文
共 50 条
  • [31] Propagation of electromagnetic waves in one-dimensional quasiperiodic media
    Badalyan, V. D.
    ASTROPHYSICS, 2006, 49 (04) : 538 - 542
  • [32] One-dimensional pulse propagation in a nonlinear elastic media
    Meurer, T
    Qu, JM
    Jacobs, LJ
    ADVANCED NONDESTRUCTIVE EVALUATION FOR STRUCTURAL AND BIOLOGICAL HEALTH MONITORING, 2001, 4335 : 202 - 209
  • [33] On beam propagation in anisotropic media: one-dimensional analysis
    Alberucci, Alessandro
    Assanto, Gaetano
    OPTICS LETTERS, 2011, 36 (03) : 334 - 336
  • [34] Propagation of electromagnetic waves in one-dimensional quasiperiodic media
    V. D. Badalyan
    Astrophysics, 2006, 49 : 538 - 542
  • [35] SOUND-ATTENUATION IN A ONE-DIMENSIONAL PERIODIC INHOMOGENEOUS-MEDIUM
    KOMURA, S
    MIYAZAWA, T
    IZUYAMA, T
    FUKUMOTO, Y
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1990, 59 (01) : 101 - 110
  • [36] Pulse propagation in finite linear one-dimensional periodic structures
    Torrese, G
    Schriemer, HP
    Cada, M
    APPLICATIONS OF PHOTONIC TECHNOLOGY, CLOSING THE GAP BETWEEN THEORY, DEVELOPMENT, AND APPLICATION, PT 1 AND 2, 2004, 5577 : 568 - 578
  • [37] Wave propagation in a one-dimensional randomly perturbed periodic medium
    Godin, Y. A.
    Molchanov, S.
    Vainberg, B.
    WAVES IN RANDOM AND COMPLEX MEDIA, 2007, 17 (03) : 381 - 395
  • [38] WAVE PROPAGATION IN ONE-DIMENSIONAL STRUCTURE OF PERIODIC INELASTICITY COMPOSITES
    Navarro, Helio Aparecido
    de Souza Braun, Meire Pereira
    PROCEEDINGS OF THE ASME INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION, 2011, VOL 8, 2012, : 899 - 908
  • [39] ACOUSTIC-WAVE PROPAGATION IN ONE-DIMENSIONAL PERIODIC COMPOSITES
    WANG, Y
    AULD, BA
    IEEE TRANSACTIONS ON ULTRASONICS FERROELECTRICS AND FREQUENCY CONTROL, 1986, 33 (01) : 100 - 100
  • [40] Propagation of elastic waves in one-dimensional periodic stubbed waveguides
    Hladky-Hennion, Anne-Christine
    Granger, Christian
    Vasseur, Jerome
    de Billy, Michel
    PHYSICAL REVIEW B, 2010, 82 (10)