Two new embedded triply periodic minimal surfaces of genus 4

被引:0
|
作者
Daniel Freese
Matthias Weber
A. Thomas Yerger
Ramazan Yol
机构
[1] Indiana University,Department of Mathematics
来源
manuscripta mathematica | 2021年 / 166卷
关键词
49Q05;
D O I
暂无
中图分类号
学科分类号
摘要
We add two new 1-parameter families to the short list of known embedded triply periodic minimal surfaces of genus 4 in R3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}^3$$\end{document}. Both surfaces can be tiled by minimal pentagons with two straight segments and three planar symmetry curves as boundary. In one case (which has the appearance of the CLP surface of Schwarz with an added handle) the two straight segments are parallel, while they are orthogonal in the second case. The second family has as one limit the Costa surface, showing that this limit can occur for triply periodic minimal surfaces. For the existence proof we solve the 1-dimensional period problem through a combination of an asymptotic analysis of the period integrals and geometric methods.
引用
收藏
页码:437 / 456
页数:19
相关论文
共 50 条
  • [21] Tensorial Minkowski functionals of triply periodic minimal surfaces
    Mickel, Walter
    Schroeder-Turk, Gerd E.
    Mecke, Klaus
    INTERFACE FOCUS, 2012, 2 (05) : 623 - 633
  • [22] Design and Applications of Triply Periodic Minimal Surfaces: A Survey
    Yan X.
    Tian L.
    Peng H.
    Lyu L.
    Jisuanji Fuzhu Sheji Yu Tuxingxue Xuebao/Journal of Computer-Aided Design and Computer Graphics, 2023, 35 (03): : 329 - 340
  • [23] THE OCLP FAMILY OF TRIPLY PERIODIC MINIMAL-SURFACES
    CVIJOVIC, D
    KLINOWSKI, J
    JOURNAL DE PHYSIQUE I, 1993, 3 (04): : 909 - 924
  • [24] Mechanical properties of porous materials based on new triply periodic and minimal surfaces
    Eremin, Anton V.
    Frolov, Michael A.
    Krutov, Alexander F.
    Smolkov, Michael I.
    Shulga, Alexander S.
    Bragin, Dmitry M.
    Popov, Andrey I.
    Blatov, Vladislav A.
    MECHANICS OF ADVANCED MATERIALS AND STRUCTURES, 2024, 31 (29) : 11320 - 11336
  • [25] Polymer Structures with the Topology of Triply Periodic Minimal Surfaces
    Shevchenko, V. Ya.
    Sychev, M. M.
    Lapshin, A. E.
    Lebedev, L. A.
    Gruzdkov, A. A.
    Glezer, A. M.
    GLASS PHYSICS AND CHEMISTRY, 2017, 43 (06) : 608 - 610
  • [26] A study on triply periodic minimal surfaces: A case study
    Patel, Aarya Hitesh
    Baxi, Neel Jignesh
    Gurrala, Pavan Kumar
    MATERIALS TODAY-PROCEEDINGS, 2022, 62 : 7334 - 7340
  • [27] Embedded, doubly periodic minimal surfaces
    Rossman, W
    Thayer, EC
    Wohlgemuth, M
    EXPERIMENTAL MATHEMATICS, 2000, 9 (02) : 197 - 219
  • [28] NEGATIVELY CURVED GRAPHITE AND TRIPLY PERIODIC MINIMAL-SURFACES
    TERRONES, H
    MACKAY, AL
    JOURNAL OF MATHEMATICAL CHEMISTRY, 1994, 15 (1-2) : 183 - 195
  • [29] Mean survival times of absorbing triply periodic minimal surfaces
    Gevertz, Jana
    Torquato, S.
    PHYSICAL REVIEW E, 2009, 80 (01)
  • [30] TRIPLY PERIODIC MINIMAL-SURFACES DECORATED WITH CURVED GRAPHITE
    TERRONES, H
    MACKAY, AL
    CHEMICAL PHYSICS LETTERS, 1993, 207 (01) : 45 - 50