Two new embedded triply periodic minimal surfaces of genus 4

被引:0
|
作者
Daniel Freese
Matthias Weber
A. Thomas Yerger
Ramazan Yol
机构
[1] Indiana University,Department of Mathematics
来源
manuscripta mathematica | 2021年 / 166卷
关键词
49Q05;
D O I
暂无
中图分类号
学科分类号
摘要
We add two new 1-parameter families to the short list of known embedded triply periodic minimal surfaces of genus 4 in R3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}^3$$\end{document}. Both surfaces can be tiled by minimal pentagons with two straight segments and three planar symmetry curves as boundary. In one case (which has the appearance of the CLP surface of Schwarz with an added handle) the two straight segments are parallel, while they are orthogonal in the second case. The second family has as one limit the Costa surface, showing that this limit can occur for triply periodic minimal surfaces. For the existence proof we solve the 1-dimensional period problem through a combination of an asymptotic analysis of the period integrals and geometric methods.
引用
收藏
页码:437 / 456
页数:19
相关论文
共 50 条
  • [1] Two new embedded triply periodic minimal surfaces of genus 4
    Freese, Daniel
    Weber, Matthias
    Yerger, A. Thomas
    Yol, Ramazan
    MANUSCRIPTA MATHEMATICA, 2021, 166 (3-4) : 437 - 456
  • [2] On the genus of triply periodic minimal surfaces
    Traizet, Martin
    JOURNAL OF DIFFERENTIAL GEOMETRY, 2008, 79 (02) : 243 - 275
  • [3] A remark on limits of triply periodic minimal surfaces of genus 3
    Ejiri, Norio
    Fujimori, Shoichi
    Shoda, Toshihiro
    TOPOLOGY AND ITS APPLICATIONS, 2015, 196 : 880 - 903
  • [4] NEW FAMILIES OF TRIPLY PERIODIC MINIMAL-SURFACES
    FOGDEN, A
    HAEBERLEIN, M
    JOURNAL OF THE CHEMICAL SOCIETY-FARADAY TRANSACTIONS, 1994, 90 (02): : 263 - 270
  • [5] SOME BASIC FACTS, OLD AND NEW, ABOUT TRIPLY PERIODIC EMBEDDED MINIMAL-SURFACES
    HOFFMAN, DA
    JOURNAL DE PHYSIQUE, 1990, 51 (23): : C7197 - C7208
  • [6] On limits of triply periodic minimal surfaces
    Norio Ejiri
    Shoichi Fujimori
    Toshihiro Shoda
    Annali di Matematica Pura ed Applicata (1923 -), 2018, 197 : 1739 - 1748
  • [7] On triply periodic minimal balance surfaces
    Molnár, E
    STRUCTURAL CHEMISTRY, 2002, 13 (3-4) : 267 - 275
  • [8] On Triply Periodic Minimal Balance Surfaces
    Emil Molnár
    Structural Chemistry, 2002, 13 : 267 - 275
  • [9] Construction of triply periodic minimal surfaces
    Karcher, H
    Polthier, K
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1996, 354 (1715): : 2077 - 2104
  • [10] On limits of triply periodic minimal surfaces
    Ejiri, Norio
    Fujimori, Shoichi
    Shoda, Toshihiro
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2018, 197 (06) : 1739 - 1748