Weak Disorder Localization and Lifshitz Tails

被引:0
|
作者
Frédéric Klopp
机构
[1] Département de Mathématique,
[2] Institut Galilée,undefined
[3] U.M.R. 7539 C.N.R.S,undefined
[4] Université de Paris-Nord,undefined
[5] 99 venue J.-B. Clément,undefined
[6] 93430 Villetaneuse,undefined
[7] France. E-mail: klopp@math.univ-paris13.fr,undefined
来源
关键词
Constant Time; Energy Region; Anderson Model; Type Estimate; Localization Length;
D O I
暂无
中图分类号
学科分类号
摘要
 This paper is devoted to the study of localization of discrete random Schrödinger Hamiltonians in the weak disorder regime. Consider an i.i.d. Anderson model and assume that its left spectral edge is 0. Let γ be the coupling constant measuring the strength of the disorder. For γ small, we prove a Lifshitz tail type estimate and use it to derive localization in a band starting at 0 going up to a distance \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document} of the average of the potential. In this energy region, we show that the localization length at energy E is bounded from above by a constant times the square root of the distance between E and the average of the potential.
引用
收藏
页码:125 / 155
页数:30
相关论文
共 50 条