Non-thermal electron acceleration from magnetically driven reconnection in a laboratory plasma

被引:0
|
作者
Abraham Chien
Lan Gao
Shu Zhang
Hantao Ji
Eric G. Blackman
William Daughton
Adam Stanier
Ari Le
Fan Guo
Russ Follett
Hui Chen
Gennady Fiksel
Gabriel Bleotu
Robert C. Cauble
Sophia N. Chen
Alice Fazzini
Kirk Flippo
Omar French
Dustin H. Froula
Julien Fuchs
Shinsuke Fujioka
Kenneth Hill
Sallee Klein
Carolyn Kuranz
Philip Nilson
Alexander Rasmus
Ryunosuke Takizawa
机构
[1] Princeton University,Department of Astrophysical Sciences
[2] Princeton Plasma Physics Laboratory,Department of Physics and Astronomy
[3] Princeton University,undefined
[4] University of Rochester,undefined
[5] Laboratory for Laser Energetics,undefined
[6] University of Rochester,undefined
[7] Los Alamos National Laboratory,undefined
[8] Lawrence Livermore National Laboratory,undefined
[9] University of Michigan,undefined
[10] ELI-NP,undefined
[11] ‘Horia Hulubei’ National Institute for Physics and Nuclear Engineering,undefined
[12] University of Bucharest,undefined
[13] Faculty of Physics,undefined
[14] LULI-CNRS,undefined
[15] CEA,undefined
[16] UPMC Univ Paris 06: Sorbonne Université,undefined
[17] École Polytechnique,undefined
[18] Institut Polytechnique de Paris,undefined
[19] University of Maryland,undefined
[20] Baltimore County,undefined
[21] Institute of Laser Engineering,undefined
[22] Osaka University,undefined
来源
Nature Physics | 2023年 / 19卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Magnetic reconnection rapidly converts magnetic energy into some combination of plasma flow energy, thermal energy and non-thermal energetic particles. Various reconnection acceleration mechanisms have been theoretically proposed and numerically studied in different collisionless and low-β environments, where β refers to the plasma-to-magnetic pressure ratio. These mechanisms include Fermi acceleration, betatron acceleration, parallel electric field acceleration along magnetic fields and direct acceleration by the reconnection electric field. However, none of them have been experimentally confirmed, as the direct observation of non-thermal particle acceleration in laboratory experiments has been difficult due to short Debye lengths for in situ measurements and short mean free paths for ex situ measurements. Here we report the direct measurement of accelerated non-thermal electrons from magnetically driven reconnection at low β in experiments using a laser-powered capacitor coil platform. We use kilojoule lasers to drive parallel currents to reconnect megagauss-level magnetic fields in a quasi-axisymmetric geometry. The angular dependence of the measured electron energy spectrum and the resulting accelerated energies, supported by particle-in-cell simulations, indicate that the mechanism of direct electric field acceleration by the out-of-plane reconnection electric field is at work. Scaled energies using this mechanism show direct relevance to astrophysical observations.
引用
收藏
页码:254 / 262
页数:8
相关论文
共 50 条
  • [21] The role of non-thermal electrons in flame acceleration
    Murphy, Daniel C.
    Sanchez-Sanz, Mario
    Fernandez-Pello, Carlos
    COMBUSTION AND FLAME, 2017, 182 : 48 - 57
  • [23] Non-thermal electron velocity distribution functions due to 3D kinetic magnetic reconnection for solar coronal plasma conditions
    Yao, Xin
    Munoz, Patricio A.
    Buchner, Joerg
    PHYSICS OF PLASMAS, 2022, 29 (02)
  • [24] Magnetically Controlled Optical Plasma Waveguide for Electron Acceleration
    Pollock, B. B.
    Davis, P.
    Divol, L.
    Glenzer, S. H.
    Palastro, J. P.
    Price, D.
    Tynan, G. R.
    Froula, D. H.
    ADVANCED ACCELERATOR CONCEPTS, 2009, 1086 : 165 - +
  • [25] Observations of electron phase-space holes driven during magnetic reconnection in a laboratory plasma
    Fox, W.
    Porkolab, M.
    Egedal, J.
    Katz, N.
    Le, A.
    PHYSICS OF PLASMAS, 2012, 19 (03)
  • [26] Non-thermal plasma mills bacteria: Scanning electron microscopy observations
    Lunov, O.
    Churpita, O.
    Zablotskii, V.
    Deyneka, I. G.
    Meshkovskii, I. K.
    Jaeger, A.
    Sykova, E.
    Kubinova, S.
    Dejneka, A.
    APPLIED PHYSICS LETTERS, 2015, 106 (05)
  • [27] IS THE ELECTRON-DISTRIBUTION THERMAL OR NON-THERMAL
    DULK, G
    UCHIDA, Y
    RAMATY, R
    KUNDU, MR
    ZIRIN, H
    EMSLIE, AG
    ENONE, S
    SOLAR PHYSICS, 1983, 86 (1-2) : 451 - 454
  • [28] THE CHANGE OF CARBOHYDRATES IN THERMAL AND NON-THERMAL PLASMA
    SPANGENBERG, HJ
    ZEITSCHRIFT FUR CHEMIE, 1983, 23 (02): : 72 - 72
  • [29] Laboratory Astrophysics Experiments with Magnetically Driven Plasma Jets
    Suzuki-Vidal, F.
    Lebedev, S. V.
    Ciardi, A.
    Bland, S. N.
    Hall, G. N.
    Swadling, G.
    Harvey-Thompson, A. J.
    Burdiak, G.
    de Grouchy, P.
    Chittenden, J. P.
    Bocchi, M.
    Bott, S. C.
    Frank, A.
    15TH INTERNATIONAL CONGRESS ON PLASMA PHYSICS (ICPP2010) & 13TH LATIN AMERICAN WORKSHOP ON PLASMA PHYSICS (LAWPP2010), 2014, 511
  • [30] Theory of non-thermal electron transfer
    Ivanov, AI
    Potovoi, VV
    CHEMICAL PHYSICS, 1999, 247 (02) : 245 - 259