Improving precipitation forecasts using extreme quantile regression

被引:0
|
作者
Jasper Velthoen
Juan-Juan Cai
Geurt Jongbloed
Maurice Schmeits
机构
[1] Delft University of Technology,Department of Applied Mathematics
[2] The Royal Netherlands Meteorological Institute (KNMI),R&D Weather and Climate Modelling
来源
Extremes | 2019年 / 22卷
关键词
Asymptotics; Extreme conditional quantile; Extreme precipitation; Forecast skill; Local linear quantile regression; Statistical post-processing;
D O I
暂无
中图分类号
学科分类号
摘要
Aiming to estimate extreme precipitation forecast quantiles, we propose a nonparametric regression model that features a constant extreme value index. Using local linear quantile regression and an extrapolation technique from extreme value theory, we develop an estimator for conditional quantiles corresponding to extreme high probability levels. We establish uniform consistency and asymptotic normality of the estimators. In a simulation study, we examine the performance of our estimator on finite samples in comparison with a method assuming linear quantiles. On a precipitation data set in the Netherlands, these estimators have greater predictive skill compared to the upper member of ensemble forecasts provided by a numerical weather prediction model.
引用
收藏
页码:599 / 622
页数:23
相关论文
共 50 条
  • [41] Probabilistic Load Forecasting via Quantile Regression Averaging on Sister Forecasts
    Liu, Bidong
    Nowotarski, Jakub
    Hong, Tao
    Weron, Rafal
    IEEE TRANSACTIONS ON SMART GRID, 2017, 8 (02) : 730 - 737
  • [42] Statistical postprocessing of ensemble global radiation forecasts with penalized quantile regression
    Ben Bouallegue, Zied
    METEOROLOGISCHE ZEITSCHRIFT, 2017, 26 (03) : 253 - 264
  • [43] Improving precipitation forecasts over Iran using a weighted average ensemble technique
    Fathi, Maede
    Azadi, Majid
    Kamali, Gholamali
    Meshkatee, Amir Hussain
    JOURNAL OF EARTH SYSTEM SCIENCE, 2019, 128 (05)
  • [44] Improving precipitation forecasts over Iran using a weighted average ensemble technique
    Maede Fathi
    Majid Azadi
    Gholamali Kamali
    Amir Hussain Meshkatee
    Journal of Earth System Science, 2019, 128
  • [45] Improving extreme quantile estimation via a folding procedure
    You, Alexandre
    Schneider, Ulrike
    Guillou, Armelle
    Naveau, Philippe
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2010, 140 (07) : 1775 - 1787
  • [46] Constructing Interval Forecasts for Solar and Wind Energy Using Quantile Regression, ARCH and Exponential Smoothing Methods
    Boland, John
    ENERGIES, 2024, 17 (13)
  • [47] Spatial aggregation and high quantile estimation applied to extreme precipitation
    Ferreira, Ana
    STATISTICS AND ITS INTERFACE, 2015, 8 (01) : 33 - 43
  • [48] Calibration and combination of seasonal precipitation forecasts over South America using Ensemble Regression
    Marisol Osman
    Caio A. S. Coelho
    Carolina S. Vera
    Climate Dynamics, 2021, 57 : 2889 - 2904
  • [49] Calibration and combination of seasonal precipitation forecasts over South America using Ensemble Regression
    Osman, Marisol
    Coelho, Caio A. S.
    Vera, Carolina S.
    CLIMATE DYNAMICS, 2021, 57 (9-10) : 2889 - 2904
  • [50] IMPROVING ESTIMATIONS IN QUANTILE REGRESSION MODEL WITH AUTOREGRESSIVE ERRORS
    Yuzbasi, Bahadir
    Asar, Yasin
    Sik, M. Samil
    Demiralp, Ahmet
    THERMAL SCIENCE, 2018, 22 : S97 - S107