On the maximum number of points in a maximal intersecting family of finite sets

被引:0
|
作者
Kaushik Majumder
机构
[1] Indian Statistical Institute,Theoretical Statistics and Mathematics Unit
来源
Combinatorica | 2017年 / 37卷
关键词
05D05; 05D15; 05C65; 05A16;
D O I
暂无
中图分类号
学科分类号
摘要
Paul Erdős and LászlÓ Lovász proved in a landmark article that, for any positive integerk, up to isomorphism there are only finitely many maximal intersecting families of k-sets(maximal k-cliques). So they posed the problem of determining or estimating the largest number N(k) of the points in such a family. They also proved by means of an example that N(k)⩾2k−2+12(2k−2k−1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N\left( k \right) \geqslant 2k - 2 + \frac{1}{2}\left( {\begin{array}{*{20}{c}} {2k - 2} \\ {k - 1} \end{array}} \right)$$\end{document}. Much later, Zsolt Tuza proved that the bound is best possibleup to a multiplicative constant by showing that asymptotically N(k) is at most 4 times this lower bound. In this paper we reduce the gap between the lower and upper boundby showing that asymptotically N(k) is at most 3 times the Erdős-Lovősz lower bound.A related conjecture of Zsolt Tuza, if proved, would imply that the explicit upper boundobtained in this paper is only double the Erdős-Lovász lower bound.
引用
收藏
页码:87 / 97
页数:10
相关论文
共 50 条
  • [21] Voting fairly: Transitive maximal intersecting families of sets
    Loeb, DE
    Conway, AR
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2000, 91 (1-2) : 386 - 410
  • [22] On the ratio of maximum and minimum degree in maximal intersecting families
    Nagy, Zoltan Lorant
    Oezkahya, Late
    Patkos, Balazs
    Vizer, Mate
    DISCRETE MATHEMATICS, 2013, 313 (02) : 207 - 211
  • [23] An Improvement of the Lower Bound on the Maximum Number of Halving Lines for Sets in the Plane with an Odd Number of Points
    Rodrigo, Javier
    Lopez, Marilo
    Magistrali, Danilo
    Alonso, Estrella
    AXIOMS, 2025, 14 (01)
  • [24] On the Maximum Number of Maximum Independent Sets
    E. Mohr
    D. Rautenbach
    Graphs and Combinatorics, 2018, 34 : 1729 - 1740
  • [25] On the Maximum Number of Maximum Independent Sets
    Mohr, E.
    Rautenbach, D.
    GRAPHS AND COMBINATORICS, 2018, 34 (06) : 1729 - 1740
  • [26] ON MAXIMAL S-FREE SETS AND THE HELLY NUMBER FOR THE FAMILY OF S-CONVEX SETS
    Averkov, Gennadiy
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2013, 27 (03) : 1610 - 1624
  • [27] Lower bounds for the number of hyperplanes separating two finite sets of points
    Kobylkin, K. S.
    TRUDY INSTITUTA MATEMATIKI I MEKHANIKI URO RAN, 2014, 20 (02): : 210 - 222
  • [28] Lower bounds for the number of hyperplanes separating two finite sets of points
    K. S. Kobylkin
    Proceedings of the Steklov Institute of Mathematics, 2015, 289 : 126 - 138
  • [29] Lower Bounds for the Number of Hyperplanes Separating Two Finite Sets of Points
    Kobylkin, K. S.
    PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2015, 289 : S126 - S138
  • [30] ON THE MAXIMUM NUMBER OF RATIONAL POINTS ON SINGULAR CURVES OVER FINITE FIELDS
    Aubry, Yves
    Iezzi, Annamaria
    MOSCOW MATHEMATICAL JOURNAL, 2015, 15 (04) : 615 - 627