Theory of truth degrees of formulas in Łukasiewiczn-valued propositional logic and a limit theorem

被引:0
|
作者
Bijing Li
Guojun Wang
机构
[1] Shaanxi Normal University,Institute of Mathematics
[2] Xi’an Jiaotong University,Research Center for Science
关键词
Łukasiewicz; -valued propositional logic; truth degree; limit theorem; integrated truth degree;
D O I
暂无
中图分类号
学科分类号
摘要
The concept of truth degrees of formulas in Łukasiewiczn-valued propositional logicLn is proposed. A limit theorem is obtained, which says that the truth functionτn induced by truth degrees converges to the integrated truth functionτ whenn converges to infinite. Hence this limit theorem builds a bridge between the discrete valued Łukasiewicz logic and the continuous valued Łukasiewicz logic. Moreover, the results obtained in the present paper is a natural generalization of the corresponding results obtained in two-valued propositional logic.
引用
收藏
页码:727 / 736
页数:9
相关论文
共 50 条
  • [21] Weak completeness of resolution in a linguistic truth-valued propositional logic
    Xu, Yang
    Chen, Shuwei
    Liu, Jun
    Ruan, Da
    THEORETICAL ADVANCES AND APPLICATIONS OF FUZZY LOGIC AND SOFT COMPUTING, 2007, 42 : 358 - +
  • [22] The Theory of Truth Degree on Vector Representation of Formula in n-valued Lukasiewicz Propositional Logic System
    Gao Xiaoli
    Hui Xiaojing
    Zhu Naidiao
    PROCEEDINGS OF THE 35TH CHINESE CONTROL CONFERENCE 2016, 2016, : 3704 - 3709
  • [23] Rough Truth Degrees of Formulas and Approximate Reasoning in Rough Logic
    She, Yanhong
    He, Xiaoli
    Wang, Guojun
    FUNDAMENTA INFORMATICAE, 2011, 111 (02) : 223 - 239
  • [24] Rough Truth Degrees of Formulas and Approximate Reasoning in Rough Logic
    She, Yanhong
    He, Xiaoli
    Wang, Guojun
    FUNDAMENTA INFORMATICAE, 2011, 107 (01) : 67 - 83
  • [25] Linguistic truth-valued intuitionistic fuzzy propositional logic based on LIA
    Zou, Li
    Wu, Shuiting
    Wu, Zhengjiang
    Xu, Yang
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON INTELLIGENT SYSTEMS AND KNOWLEDGE ENGINEERING (ISKE 2007), 2007,
  • [26] THE STRUCTURE OF GENERALIZED LITERALS IN LINGUISTIC TRUTH-VALUED PROPOSITIONAL LOGIC SYSTEMS
    Xu, Weitao
    Xu, Yang
    Li, Tianrui
    INTELLIGENT DECISION MAKING SYSTEMS, VOL. 2, 2010, : 631 - 636
  • [27] Theory of Δ conditional randomized truth degree in Godel n-valued propositional logic system of adding Δ operator
    Wang, Bo
    Hui, Xiao-Jing
    SCIENCEASIA, 2024, 50 (02): : 1 - 6
  • [28] Six-element linguistic truth-valued intuitionistic propositional logic
    Zou, Li
    Liu, Xin
    Xu, Yang
    Journal of Information and Computational Science, 2009, 6 (01): : 315 - 320
  • [29] Semantic theory of finite lattice-valued propositional logic
    PAN XiaoDong 1
    2 Intelligent Control Development Center
    Science China(Information Sciences), 2010, 53 (10) : 2022 - 2031
  • [30] Syntax theory of finite lattice-valued propositional logic
    PAN XiaoDong
    MENG Dan
    XU Yang
    Science China(Information Sciences), 2013, 56 (08) : 177 - 188