Combined perturbation bounds: II. Polar decompositions

被引:0
|
作者
Wen Li
Wei-wei Sun
机构
[1] South China Normal University,School of Mathematical Sciences
[2] City University of Hong Kong,Department of Mathematics
来源
Science in China Series A: Mathematics | 2007年 / 50卷
关键词
polar decomposition; perturbation; singular value; 65F10; 15A18; 05C87;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we study the perturbation bounds for the polar decomposition A = QH where Q is unitary and H is Hermitian. The optimal (asymptotic) bounds obtained in previous works for the unitary factor, the Hermitian factor and singular values of A are σr2‖ΔQ‖F2 ⩽ ‖ΔA‖F2, 1/2‖ΔH‖F2 ⩽ ‖ΔA‖F2 and ‖ΔΣ‖F2 ⩽ ‖ΔA‖F2, respectively, where Σ = diag(σ1, σ2, …, σr, …, 0 ) is the singular value matrix of A and σr denotes the smallest nonzero singular value. Here we present some new combined (asymptotic) perturbation bounds σr2‖ΔQ‖F2+1/2‖ΔH‖F2 ⩽ ‖ΔA‖F2 and σr2‖ΔQ‖F2+‖ΔΣ‖F2 ⩽ ‖ΔA‖F2 which are optimal for each factor. Some corresponding absolute perturbation bounds are also given.
引用
收藏
页码:1339 / 1346
页数:7
相关论文
共 50 条
  • [21] Relative perturbation bounds for the unitary polar factor
    Ren-Cang Li
    BIT Numerical Mathematics, 1997, 37 : 67 - 75
  • [23] Relative perturbation bounds for weighted polar decomposition
    Li, Hanyu
    Yang, Hu
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2010, 59 (02) : 853 - 860
  • [24] Relative and Absolute Perturbation Bounds for Weighted Polar Decomposition
    Zhang, Pingping
    Yang, Hu
    Li, Hanyu
    JOURNAL OF APPLIED MATHEMATICS, 2012,
  • [25] Some New Perturbation Bounds for the Generalized Polar Decomposition
    Xiao-shan Chen
    Wen Li
    Weiwei Sun
    BIT Numerical Mathematics, 2004, 44 : 237 - 244
  • [26] New multiplicative perturbation bounds for the generalized polar decomposition
    Liu, Na
    Luo, Wei
    Xu, Qingxiang
    APPLIED MATHEMATICS AND COMPUTATION, 2018, 339 : 259 - 271
  • [27] Some New Perturbation Bounds for Subunitary Polar Factors
    Wen LI Department of Mathematics
    ActaMathematicaSinica(EnglishSeries), 2005, 21 (06) : 1515 - 1520
  • [28] Some new perturbation bounds of generalized polar decomposition
    Hong, Xiaoli
    Meng, Lingsheng
    Zheng, Bing
    APPLIED MATHEMATICS AND COMPUTATION, 2014, 233 : 430 - 438
  • [29] Some New Perturbation Bounds for Subunitary Polar Factors
    Wen Li
    Acta Mathematica Sinica, 2005, 21 : 1515 - 1520
  • [30] MULTIPLICATIVE PERTURBATION BOUNDS FOR WEIGHTED UNITARY POLAR FACTOR
    Yang, Hu
    Li, Hanyu
    Shao, Hua
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2010, 13 (03): : 537 - 553