Resonance-shifting to circumvent reabsorption loss in luminescent solar concentrators

被引:0
|
作者
Noel C. Giebink
Gary P. Wiederrecht
Michael R. Wasielewski
机构
[1] Center for Nanoscale Materials,Department of Chemistry
[2] Argonne National Laboratory,undefined
[3] Argonne-Northwestern Solar Energy Research Center (ANSER),undefined
[4] Northwestern University,undefined
[5] Northwestern University,undefined
来源
Nature Photonics | 2011年 / 5卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Luminescent solar concentrators (LSCs) provide a simple means to concentrate sunlight without tracking the Sun. These devices absorb and then re-emit light at a lower frequency into the confined modes of a transparent slab, where it is guided towards photovoltaic cells attached to the slab edges. In the thermodynamic limit, a concentration ratio exceeding the equivalent of 100 suns is possible, but, in actual LSCs, optical propagation loss (due mostly to reabsorption) limits the concentration ratio to ∼10. Here, we introduce a general, all-optical means to overcome this problem by ‘resonance-shifting’, in which sharply directed emission from a bilayer cavity into the glass substrate returns to interact with the cavity off-resonance at each subsequent bounce, significantly reducing reabsorption loss en route to the edges. Using this strategy, we demonstrate near-lossless propagation for several different chromophores, which ultimately enables a more than twofold increase in concentration ratio over that of the corresponding conventional LSC.
引用
收藏
页码:694 / 701
页数:7
相关论文
共 50 条
  • [31] Core/Shell Quantum Dot Based Luminescent Solar Concentrators with Reduced Reabsorption and Enhanced Efficiency
    Coropceanu, Igor
    Bawendi, Moungi G.
    NANO LETTERS, 2014, 14 (07) : 4097 - 4101
  • [32] New luminescent materials and filters for Luminescent Solar Concentrators
    de Boer, Dick K. G.
    Ronda, Cees R.
    Keur, Wilco
    Meijerink, Andries
    HIGH AND LOW CONCENTRATOR SYSTEMS FOR SOLAR ELECTRIC APPLICATIONS VI, 2011, 8108
  • [33] Luminescent Solar Concentrators Employing Phycobilisomes
    Mulder, Carlijn L.
    Theogarajan, Luke
    Currie, Michael
    Mapel, Jonathan K.
    Baldo, Marc A.
    Vaughn, Michael
    Willard, Paul
    Bruce, Barry D.
    Moss, Mark W.
    McLain, Clifford E.
    Morseman, John P.
    ADVANCED MATERIALS, 2009, 21 (31) : 3181 - +
  • [34] Dye Aggregates in Luminescent Solar Concentrators
    Eisfeld, Alexander
    Briggs, John S.
    PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE, 2018, 215 (02):
  • [35] LUMINESCENT SOLAR CONCENTRATORS AS BIFACIAL CAPTORS
    LIFANTE, G
    CUSSO, F
    MESEGUER, F
    JAQUE, F
    SOLAR CELLS, 1983, 8 (04): : 355 - 360
  • [36] A perspective on sustainable luminescent solar concentrators
    Hernandez-Rodriguez, M. A.
    Correia, S. F. H.
    Ferreira, R. A. S.
    Carlos, L. D.
    JOURNAL OF APPLIED PHYSICS, 2022, 131 (14)
  • [37] Spectral converters and luminescent solar concentrators
    Scudo, Petra F.
    Abbondanza, Luigi
    Fusco, Roberto
    Caccianotti, Luciano
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2010, 94 (07) : 1241 - 1246
  • [38] Optical Enhancement for Luminescent Solar Concentrators
    Wang, Chunhua
    Winston, Roland
    Zhang, Weiya
    Pelka, Dave
    Carter, Sue
    NONIMAGING OPTICS: EFFICIENT DESIGN FOR ILLUMINATION AND SOLAR CONCENTRATION VII, 2010, 7785
  • [39] Perovskite luminescent solar concentrators for photovoltaics
    Xia, Pengfei
    Xu, Shuhong
    Wang, Chunlei
    Ban, Dayan
    APL PHOTONICS, 2021, 6 (12)
  • [40] The Hidden Potential of Luminescent Solar Concentrators
    Papakonstantinou, Ioannis
    Portnoi, Mark
    Debije, Michael G.
    ADVANCED ENERGY MATERIALS, 2021, 11 (03)