A Wavelet-Based Model for Determining Asphaltene Onset Pressure

被引:0
|
作者
Mohammad Heidary
Kazem Fouladi Hossein Abad
机构
[1] Research Institute of Petroleum Industry (RIPI),
来源
关键词
Asphaltene onset pressure; Solid detection system; Curvature of transmitted light; Entropy of transmitted light curvature; Discrete wavelet transform;
D O I
暂无
中图分类号
学科分类号
摘要
Asphaltene onset pressure (AOP) is a significant parameter for determining the flow assurance of live oils. The solid detection system (SDS) is one of the prevalent techniques used by service laboratories to evaluate the stability of asphaltenes under reservoir conditions. The determination of AOP based on this technique entails the interpretation of recorded data, making the accuracy of the result prone to error. Accordingly, this research aimed to provide a robust computational method for determining AOP by wavelet analysis of SDS data. Changes in the curvature of transmitted light (CTL) were considered a diagnostic criterion to detect AOP. To substantiate this hypothesis, CTL was first calculated at each pressure. The discrete wavelet transform was then applied to decompose the CTL curve and compute the CTL entropy ECTL\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left( {E_{\text{CTL}} } \right)$$\end{document} based on the decomposition results. Finally, a relation was established between AOP and the entropy variations of CTL ΔECTL\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left( {\Delta E_{\text{CTL}} } \right)$$\end{document}, leading to the AOP determination model. This model indicated that the maximum value of ΔECTL\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta E_{\text{CTL}}$$\end{document} is at AOP. Put differently, the onset of asphaltene precipitation pressure corresponds to the highest variation in the CTL entropy. The results obtained from the AOP determination model in various reservoirs are consistent with the experimental findings.
引用
收藏
页码:741 / 752
页数:11
相关论文
共 50 条
  • [21] A Fast Measurement of Asphaltene Onset Pressure
    Sullivan, M.
    Smythe, E. J.
    Fukagawa, S.
    Harrison, C.
    Dumont, Hadrien
    Borman, C.
    SPE RESERVOIR EVALUATION & ENGINEERING, 2020, 23 (03) : 962 - 978
  • [22] A Wavelet-Based Electrogram Onset Delineator for Automatic Ventricular Activation Mapping
    Alcaine, Alejandro
    Soto-Iglesias, David
    Calvo, Mireia
    Guiu, Esther
    Andreu, David
    Fernandez-Armenta, Juan
    Berruezo, Antonio
    Laguna, Pablo
    Camara, Oscar
    Pablo Martinez, Juan
    IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2014, 61 (12) : 2830 - 2839
  • [23] Wavelet-based ULF wave diagnosis of substorm expansion phase onset
    Murphy, Kyle R.
    Rae, I. Jonathan
    Mann, Ian R.
    Milling, David K.
    Watt, Clare E. J.
    Ozeke, Louis
    Frey, Harald U.
    Angelopoulos, Vassilis
    Russell, Christopher T.
    JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2009, 114
  • [24] Wavelet-based Detection Method for Physiological Pressure Signal Components
    Boronoev, Vitaliy V.
    Garmaev, Bair Z.
    2014 INTERNATIONAL CONFERENCE ON COMPUTER TECHNOLOGIES IN PHYSICAL AND ENGINEERING APPLICATIONS (ICCTPEA), 2014, : 23 - 24
  • [25] Wavelet-based deconvolution
    Novikov, L. V.
    INSTRUMENTS AND EXPERIMENTAL TECHNIQUES, 2007, 50 (01) : 61 - 67
  • [26] Network traffic prediction by a wavelet-based combined model
    孙韩林
    金跃辉
    崔毅东
    程时端
    Chinese Physics B, 2009, 18 (11) : 4760 - 4768
  • [27] A wavelet-based feature vector model for DNA clustering
    Bao, J. P.
    Yuan, R. Y.
    GENETICS AND MOLECULAR RESEARCH, 2015, 14 (04): : 19163 - 19172
  • [28] Wavelet-Based Multiresolution with
    Lars Linsen
    Bernd Hamann
    Kenneth I. Joy
    Valerio Pascucci
    Mark A. Duchaineau
    Computing, 2004, 72 : 129 - 142
  • [29] Wavelet-based pressure analysis for hydraulic pump health diagnosis
    Gao, Y
    Zhang, Q
    Kong, X
    TRANSACTIONS OF THE ASAE, 2003, 46 (04): : 969 - 976
  • [30] Wavelet-based deconvolution
    L. V. Novikov
    Instruments and Experimental Techniques, 2007, 50 : 61 - 67