On Maximally Mixed Equilibria of Two-Dimensional Perfect Fluids

被引:0
|
作者
Michele Dolce
Theodore D. Drivas
机构
[1] Imperial College London,Department of Mathematics
[2] Stony Brook University,Department of Mathematics
[3] School of Mathematics,undefined
[4] Institute for Advanced Study,undefined
来源
Archive for Rational Mechanics and Analysis | 2022年 / 246卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
The vorticity of a two-dimensional perfect (incompressible and inviscid) fluid is transported by its area preserving flow. Given an initial vorticity distribution ω0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega _0$$\end{document}, predicting the long time behavior which can persist is an issue of fundamental importance. In the infinite time limit, some irreversible mixing of ω0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega _0$$\end{document} can occur. Since kinetic energy E\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\textsf{E}}$$\end{document} is conserved, not all the mixed states are relevant and it is natural to consider only the ones with energy E0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\textsf{E}}_0$$\end{document} corresponding to ω0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega _0$$\end{document}. The set of said vorticity fields, denoted by Oω0¯∗∩{E=E0}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overline{{\mathcal {O}}_{\omega _0}}^*\cap \{ {{\textsf{E}}}= {\mathsf E}_0\}$$\end{document}, contains all the possible end states of the fluid motion. A. Shnirelman introduced the concept of maximally mixed states (any further mixing would necessarily change their energy), and proved they are perfect fluid equilibria. We offer a new perspective on this theory by showing that any minimizer of any strictly convex Casimir in Oω0¯∗∩{E=E0}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overline{{\mathcal {O}}_{\omega _0}}^*\cap \{ {{\textsf{E}}}= {{\textsf{E}}}_0\}$$\end{document} is maximally mixed, as well as discuss its relation to classical statistical hydrodynamics theories. Thus, (weak) convergence to equilibrium cannot be excluded solely on the grounds of vorticity transport and conservation of kinetic energy. On the other hand, on domains with symmetry (for example straight channel or annulus), we exploit all the conserved quantities and the characterizations of Oω0¯∗∩{E=E0}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overline{{\mathcal {O}}_{\omega _0}}^*\cap \{ {{\textsf{E}}}= {\mathsf E}_0\}$$\end{document} to give examples of open sets of initial data which can be arbitrarily close to any shear or radial flow in L1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^1$$\end{document} of vorticity but do not weakly converge to them in the long time limit.
引用
收藏
页码:735 / 770
页数:35
相关论文
共 50 条
  • [31] Spinodal decomposition in two-dimensional binary fluids
    Wagner, AJ
    Yeomans, JM
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 1998, 9 (08): : 1373 - 1382
  • [32] Vortex Thermometry for Turbulent Two-Dimensional Fluids
    Groszek, Andrew J.
    Davis, Matthew J.
    Paganin, David M.
    Helmerson, Kristian
    Simula, Tapio P.
    PHYSICAL REVIEW LETTERS, 2018, 120 (03)
  • [33] DYNAMICS OF VORTICES IN TWO-DIMENSIONAL SPIN FLUIDS
    TAKENO, S
    HOMMA, S
    PROGRESS OF THEORETICAL PHYSICS, 1982, 67 (05): : 1633 - 1636
  • [34] Drag Law of Two-Dimensional Granular Fluids
    Takada, Satoshi
    Hayakawa, Hisao
    JOURNAL OF ENGINEERING MECHANICS, 2017, 143 (01)
  • [35] Controlled formation and mixing of two-dimensional fluids
    Czolkos, Ilja
    Erkan, Yavuz
    Dommersnes, Paul
    Jesorka, Aldo
    Orwar, Owe
    NANO LETTERS, 2007, 7 (07) : 1980 - 1984
  • [36] The line tension of two-dimensional ionic fluids
    del Rosario Eustaquio-Armenta, Maria
    Arlette Mendez-Maldonado, Gloria
    Gonzalez-Melchor, Minerva
    JOURNAL OF CHEMICAL PHYSICS, 2016, 144 (13):
  • [37] TWO-DIMENSIONAL EQUILIBRIUM CONFIGURATIONS IN KORTEWEG FLUIDS
    Gorgone, M.
    Oliveri, F.
    Ricciardello, A.
    Rogolino, P.
    THEORETICAL AND APPLIED MECHANICS, 2022, 49 (02) : 111 - 122
  • [38] PERFECT RECONSTRUCTION QMF BANKS FOR TWO-DIMENSIONAL APPLICATIONS
    VAIDYANATHAN, PP
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, 1987, 34 (08): : 976 - 978
  • [39] Two-dimensional Compact Perfect Shuffle Optical Interconnection
    ZHANG Erping
    YU Chongxiu
    ZHOU Jing
    XU Daxiong(BOX 163#
    Chinese Journal of Lasers, 1995, (02) : 133 - 136