On Maximally Mixed Equilibria of Two-Dimensional Perfect Fluids

被引:0
|
作者
Michele Dolce
Theodore D. Drivas
机构
[1] Imperial College London,Department of Mathematics
[2] Stony Brook University,Department of Mathematics
[3] School of Mathematics,undefined
[4] Institute for Advanced Study,undefined
关键词
D O I
暂无
中图分类号
学科分类号
摘要
The vorticity of a two-dimensional perfect (incompressible and inviscid) fluid is transported by its area preserving flow. Given an initial vorticity distribution ω0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega _0$$\end{document}, predicting the long time behavior which can persist is an issue of fundamental importance. In the infinite time limit, some irreversible mixing of ω0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega _0$$\end{document} can occur. Since kinetic energy E\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\textsf{E}}$$\end{document} is conserved, not all the mixed states are relevant and it is natural to consider only the ones with energy E0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\textsf{E}}_0$$\end{document} corresponding to ω0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega _0$$\end{document}. The set of said vorticity fields, denoted by Oω0¯∗∩{E=E0}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overline{{\mathcal {O}}_{\omega _0}}^*\cap \{ {{\textsf{E}}}= {\mathsf E}_0\}$$\end{document}, contains all the possible end states of the fluid motion. A. Shnirelman introduced the concept of maximally mixed states (any further mixing would necessarily change their energy), and proved they are perfect fluid equilibria. We offer a new perspective on this theory by showing that any minimizer of any strictly convex Casimir in Oω0¯∗∩{E=E0}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overline{{\mathcal {O}}_{\omega _0}}^*\cap \{ {{\textsf{E}}}= {{\textsf{E}}}_0\}$$\end{document} is maximally mixed, as well as discuss its relation to classical statistical hydrodynamics theories. Thus, (weak) convergence to equilibrium cannot be excluded solely on the grounds of vorticity transport and conservation of kinetic energy. On the other hand, on domains with symmetry (for example straight channel or annulus), we exploit all the conserved quantities and the characterizations of Oω0¯∗∩{E=E0}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overline{{\mathcal {O}}_{\omega _0}}^*\cap \{ {{\textsf{E}}}= {\mathsf E}_0\}$$\end{document} to give examples of open sets of initial data which can be arbitrarily close to any shear or radial flow in L1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^1$$\end{document} of vorticity but do not weakly converge to them in the long time limit.
引用
收藏
页码:735 / 770
页数:35
相关论文
共 50 条
  • [1] On Maximally Mixed Equilibria of Two-Dimensional Perfect Fluids
    Dolce, Michele
    Drivas, Theodore D.
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2022, 246 (2-3) : 735 - 770
  • [2] Phase equilibria and interfacial properties of two-dimensional Yukawa fluids
    Mendez-Maldonado, G. A.
    Gonzalez-Melchor, M.
    Alejandre, J.
    CONDENSED MATTER PHYSICS, 2012, 15 (02)
  • [3] TWO-DIMENSIONAL MAGNETOHYDRODYNAMIC EQUILIBRIA
    KHATER, AH
    ELATTARY, MA
    ELSABBAGH, MF
    CALLEBAUT, DK
    ASTROPHYSICS AND SPACE SCIENCE, 1988, 149 (02) : 217 - 223
  • [4] Vortex arrays for sinh-Poisson equation of two-dimensional fluids: Equilibria and stability
    Gurarie, D
    Chow, KW
    PHYSICS OF FLUIDS, 2004, 16 (09) : 3296 - 3305
  • [5] On Perfect Coverings of Two-Dimensional Grids
    Heikkila, Elias
    Herva, Pyry
    Kari, Jarkko
    DEVELOPMENTS IN LANGUAGE THEORY (DLT 2022), 2022, 13257 : 152 - 163
  • [6] Two-dimensional perfect quaternary arrays
    Arasu, KT
    de Launey, W
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2001, 47 (04) : 1482 - 1493
  • [7] Equilibria of two-dimensional systems I
    Rowley, HH
    Innes, WB
    JOURNAL OF PHYSICAL CHEMISTRY, 1942, 46 (05): : 537 - 548
  • [8] ON TWO-DIMENSIONAL MAGNETOSTATIC EQUILIBRIA AND THEIR STABILITY
    HU, YQ
    ASTROPHYSICAL JOURNAL, 1988, 331 (01): : 402 - 415
  • [9] Nematic Equilibria on a Two-Dimensional Annulus
    Lewis, A. H.
    Aarts, D. G. A. L.
    Howell, P. D.
    Majumdar, A.
    STUDIES IN APPLIED MATHEMATICS, 2017, 138 (04) : 438 - 466
  • [10] Magnetization of two-dimensional magnetic fluids
    Kristof, T.
    Szalai, I.
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2008, 20 (20)