On the Hilbert Evolution Algebras of a Graph

被引:0
|
作者
S. J. Vidal
P. Cadavid
P. M. Rodriguez
机构
[1] Universidad Nacional de la Patagonia “San Juan Bosco”,Departamento de Matemática, Facultad de Ingeniería
[2] Universidade Federal do ABC,Centro de Ciências Exatas e da Natureza
[3] Universidade Federal de Pernambuco,undefined
来源
关键词
genetic algebra; evolution algebra; Hilbert space; infinite graph; 519.173;
D O I
暂无
中图分类号
学科分类号
摘要
Evolution algebras are a special class of nonassociative algebras exhibiting connections with various fields of mathematics. Hilbert evolution algebras generalize the concept in the framework of Hilbert spaces. This allows us to deal with a wide class of infinite-dimensional spaces. We study Hilbert evolution algebras associated to a graph. Inspired by the definitions of evolution algebras we define the Hilbert evolution algebra that is associated to a given graph and the Hilbert evolution algebra that is associated to the symmetric random walk on a graph. For a given graph, we provide the conditions for these structures to be or not to be isomorphic. Our definitions and results extend to the graphs with infinitely many vertices. We also develop a similar theory for the evolution algebras associated to finite graphs.
引用
收藏
页码:995 / 1011
页数:16
相关论文
共 50 条
  • [41] FUZZY ABYSMS OF HILBERT ALGEBRAS
    Jun, Young Bae
    Lee, Kyoung Ja
    Park, Chul Hwan
    JOURNAL OF THE KOREAN SOCIETY OF MATHEMATICAL EDUCATION SERIES B-PURE AND APPLIED MATHEMATICS, 2008, 15 (04): : 377 - 385
  • [42] On Hilbert algebras generated by the order
    J. L. Castiglioni
    S. A. Celani
    H. J. San Martín
    Archive for Mathematical Logic, 2022, 61 : 155 - 172
  • [43] Pure hilbert algebras with infimum
    Figallo, Aldo, Jr.
    LOGIC JOURNAL OF THE IGPL, 2007, 15 (5-6) : 527 - 533
  • [44] Hilbert 90 for Algebras with Conjugation
    Patrik Lundström
    Algebras and Representation Theory, 2012, 15 : 119 - 135
  • [45] On frontal operators in Hilbert algebras
    Castiglioni, Jose L.
    San Martin, Hernan J.
    LOGIC JOURNAL OF THE IGPL, 2015, 23 (02) : 217 - 234
  • [46] On the Hilbert series of Koszul algebras
    Piontkovski, DI
    FUNCTIONAL ANALYSIS AND ITS APPLICATIONS, 2001, 35 (02) : 133 - 137
  • [47] Uniform Topology on Hilbert Algebras
    Saeid, A. Borumand
    Babaei, H.
    Haveshki, M.
    KYUNGPOOK MATHEMATICAL JOURNAL, 2005, 45 (03): : 405 - 411
  • [48] A theorem of representation for Hilbert algebras
    Tascau, Dan Dorin
    ANNALS OF THE UNIVERSITY OF CRAIOVA-MATHEMATICS AND COMPUTER SCIENCE SERIES, 2010, 37 (03): : 130 - 137
  • [49] On prelinear Hilbert algebras with successor
    Luis Castiglioni, Jose
    San Martin, Hernan J.
    FUZZY SETS AND SYSTEMS, 2020, 397 : 107 - 122
  • [50] Hilbert schemes and W algebras
    Li, WP
    Qin, ZB
    Wang, WQ
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2002, 2002 (27) : 1427 - 1456