On the Hilbert Evolution Algebras of a Graph

被引:0
|
作者
S. J. Vidal
P. Cadavid
P. M. Rodriguez
机构
[1] Universidad Nacional de la Patagonia “San Juan Bosco”,Departamento de Matemática, Facultad de Ingeniería
[2] Universidade Federal do ABC,Centro de Ciências Exatas e da Natureza
[3] Universidade Federal de Pernambuco,undefined
来源
关键词
genetic algebra; evolution algebra; Hilbert space; infinite graph; 519.173;
D O I
暂无
中图分类号
学科分类号
摘要
Evolution algebras are a special class of nonassociative algebras exhibiting connections with various fields of mathematics. Hilbert evolution algebras generalize the concept in the framework of Hilbert spaces. This allows us to deal with a wide class of infinite-dimensional spaces. We study Hilbert evolution algebras associated to a graph. Inspired by the definitions of evolution algebras we define the Hilbert evolution algebra that is associated to a given graph and the Hilbert evolution algebra that is associated to the symmetric random walk on a graph. For a given graph, we provide the conditions for these structures to be or not to be isomorphic. Our definitions and results extend to the graphs with infinitely many vertices. We also develop a similar theory for the evolution algebras associated to finite graphs.
引用
收藏
页码:995 / 1011
页数:16
相关论文
共 50 条
  • [1] On the Hilbert Evolution Algebras of a Graph
    Vidal, S. J.
    Cadavid, P.
    Rodriguez, P. M.
    SIBERIAN MATHEMATICAL JOURNAL, 2022, 63 (05) : 995 - 1011
  • [2] Hilbert evolution algebras, weighted digraphs, and nilpotency
    Cadavid, Paula
    Rodriguez, Pablo M.
    Vidal, Sebastian J.
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2024, 118 (03)
  • [3] Graph products of spheres, associative graded algebras and Hilbert series
    Bubenik, Peter
    Gold, Leah H.
    MATHEMATISCHE ZEITSCHRIFT, 2011, 268 (3-4) : 821 - 836
  • [4] Graph products of spheres, associative graded algebras and Hilbert series
    Peter Bubenik
    Leah H. Gold
    Mathematische Zeitschrift, 2011, 268 : 821 - 836
  • [5] Hilbert Algebras with Hilbert–Galois Connections
    Sergio A. Celani
    Daniela Montangie
    Studia Logica, 2023, 111 : 113 - 138
  • [6] HILBERT ALGEBRAS IN A NON-CLASSICAL FRAMEWORK: HILBERT ALGEBRAS WITH APARTNESS
    Romano, Daniel A.
    JOURNAL OF APPLIED LOGICS-IFCOLOG JOURNAL OF LOGICS AND THEIR APPLICATIONS, 2020, 7 (03): : 337 - 359
  • [7] Hilbert algebras in a non-classical framework: Hilbert algebras With apartness
    Romano, Daniel A.
    Journal of Applied Logics, 2020, 7 (03): : 337 - 359
  • [8] A Note on Hilbert Algebras
    Figallo, Aldo
    Ziliani, Alicia
    SOUTHEAST ASIAN BULLETIN OF MATHEMATICS, 2008, 32 (04) : 667 - 676
  • [9] CENTRAL HILBERT ALGEBRAS
    Jun, Young Bae
    Park, Chul Hwan
    JOURNAL OF THE KOREAN SOCIETY OF MATHEMATICAL EDUCATION SERIES B-PURE AND APPLIED MATHEMATICS, 2008, 15 (03): : 309 - 313
  • [10] Derivations of Hilbert Algebras
    Iampan, Aiyared
    Alayakkaniamuthu, R.
    Sundari, P. Gomathi
    Rajesh, N.
    INTERNATIONAL JOURNAL OF ANALYSIS AND APPLICATIONS, 2023, 21