Quasi-Periodic Solutions for the Reversible Derivative Nonlinear Schrödinger Equations with Periodic Boundary Conditions

被引:0
|
作者
Zhaowei Lou
Jianguo Si
机构
[1] Shandong University,School of Mathematics
关键词
DNLS; Periodic boundary conditions; Quasi-periodic solution; KAM theorem; Reversible vector field; 37K55; 35Q41; 35B15;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we prove the existence of small amplitude, smooth time quasi-periodic solutions for a class of reversible derivative nonlinear Schrödinger equations with periodic boundary conditions. The proof is based on an abstract Kolmogorov–Arnold–Moser(KAM) theorem for infinite dimensional reversible system.
引用
收藏
页码:1031 / 1069
页数:38
相关论文
共 50 条
  • [42] Quasi-periodic solutions of nonlinear Schrodinger equations on Td
    Berti, Massimiliano
    Bolle, Philippe
    RENDICONTI LINCEI-MATEMATICA E APPLICAZIONI, 2011, 22 (02) : 223 - 236
  • [43] Quasi-periodic solutions of nonlinear random Schrodinger equations
    Bourgain, J.
    Wang, W. -M.
    JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2008, 10 (01) : 1 - 45
  • [44] Quasi-periodic solutions of the coupled nonlinear Schrodinger equations
    Christiansen, P.L.
    Eilbeck, J.C.
    Enolskii, V.Z.
    Kostov, N.A.
    Proceedings of The Royal Society of London, Series A: Mathematical and Physical Sciences, 1995, 451 (1943): : 685 - 700
  • [45] Quasi-periodic solutions of the coupled nonlinear Schrodinger equations
    Christiansen, PL
    Eilbeck, JC
    Enolskii, VZ
    Kostov, NA
    PROCEEDINGS OF THE ROYAL SOCIETY-MATHEMATICAL AND PHYSICAL SCIENCES, 1995, 451 (1943): : 685 - 700
  • [46] Existence and stability of quasi-periodic solutions for derivative wave equations
    Berti, Massimiliano
    Biasco, Luca
    Procesi, Michela
    RENDICONTI LINCEI-MATEMATICA E APPLICAZIONI, 2013, 24 (02) : 199 - 214
  • [47] Quasi-periodic solutions for quasi-periodically forced nonlinear Schrodinger equations with quasi-periodic inhomogeneous terms
    Rui, Jie
    Si, Jianguo
    PHYSICA D-NONLINEAR PHENOMENA, 2014, 286 : 1 - 31
  • [48] On the inverse spectral problem for the quasi-periodic Schrödinger equation
    David Damanik
    Michael Goldstein
    Publications mathématiques de l'IHÉS, 2014, 119 : 217 - 401
  • [49] Quasi-periodic and periodic solutions for coupled nonlinear Schrodinger equations of Manakov type
    Christiansen, PL
    Eilbeck, JC
    Enolskii, VZ
    Kostov, NA
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2000, 456 (2001): : 2263 - 2281
  • [50] On High Dimensional Schrödinger Equation with Quasi-Periodic Potentials
    Dongfeng Zhang
    Jianli Liang
    Journal of Dynamical and Control Systems, 2017, 23 : 655 - 666