Hanbury Brown and Twiss measurements in curved space

被引:0
|
作者
Schultheiss V.H. [1 ]
Batz S. [1 ]
Peschel U. [1 ,2 ]
机构
[1] Institute of Optics, Information and Photonics, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Haberstr. 9a, Erlangen
[2] Institute of Condensed Matter Theory and Solid State Optics, Friedrich-Schiller-University Jena, Max-Wien-Platz 1, Jena
关键词
D O I
10.1038/nphoton.2015.244
中图分类号
学科分类号
摘要
When Hanbury Brown and Twiss (HBT) proposed their technique of intensity correlation measurements to examine the angular size of stars in the visible range, they challenged the common conception of quantum mechanics and kicked off a discussion that led to the establishment of quantum optics. In this Letter we revisit this fundamental technique and study its implications in the presence of space curvature. To this end we theoretically and experimentally investigate the evolution of speckle patterns propagating along two-dimensional surfaces of constant positive and negative Gaussian curvature, defying the notion that light always gains spatial coherence during free-space propagation. We also discuss the measurability of the traversed space's curvature utilizing HBT from an inhabitant's point of view. Through their symmetry, surfaces with constant Gaussian curvature act as analogue models for universes possessing non-vanishing cosmological constants. © 2016 Macmillan Publishers Limited. All rights reserved.
引用
收藏
页码:106 / 110
页数:4
相关论文
共 50 条
  • [41] Hanbury-Brown and Twiss effect in inflationary cosmological perturbations
    Gauy, Gustavo Matheus
    Sobreira, Flavia
    Torrieri, Giorgio
    PHYSICAL REVIEW D, 2024, 110 (08)
  • [42] Hanbury-Brown-Twiss analysis of anisotropic transverse flow
    Voloshin, SA
    Cleland, WE
    PHYSICAL REVIEW C, 1996, 53 (02): : 896 - 900
  • [43] Enhanced Hanbury Brown and Twiss interferometry using parametric amplification
    Xiaoping Ma
    Chenglong You
    Sushovit Adhikari
    Yongjian Gu
    Omar S. Magaña-Loaiza
    Jonathan P. Dowling
    Hwang Lee
    EPJ Quantum Technology, 2020, 7
  • [44] Comparison of the Hanbury Brown-Twiss effect for bosons and fermions
    Jeltes, T.
    McNamara, J. M.
    Hogervorst, W.
    Vassen, W.
    Krachmalnicoff, V.
    Schellekens, M.
    Perrin, A.
    Chang, H.
    Boiron, D.
    Aspect, A.
    Westbrook, C. I.
    NATURE, 2007, 445 (7126) : 402 - 405
  • [45] Multifrequency-resolved Hanbury Brown-Twiss effect
    Ferrantini, Joseph
    Crawford, Jesse
    Kulkov, Sergei
    Jirsa, Jakub
    Mueninghoff, Aaron
    Lawrence, Lucas
    Vintskevich, Stephen
    Milanese, Tommaso
    Burri, Samuel
    Bernasconi, Ermanno
    Bruschini, Claudio
    Marcisovsky, Michal
    Svihra, Peter
    Nomerotski, Andrei
    Stankus, Paul
    Charbon, Edoardo
    Abrahao, Raphael A.
    APL PHOTONICS, 2025, 10 (02)
  • [46] The Hanbury Brown-Twiss effect in a pulsed atom laser
    Manning, A. G.
    Hodgman, S. S.
    Dall, R. G.
    Johnsson, M. T.
    Truscott, A. G.
    OPTICS EXPRESS, 2010, 18 (18): : 18712 - 18719
  • [47] Hanbury Brown and Twiss correlations of Cooper pairs in helical liquids
    Choi, Mahn-Soo
    PHYSICAL REVIEW B, 2014, 89 (04):
  • [48] Observation of Hanbury Brown-Twiss anticorrelations for free electrons
    Kiesel, H
    Renz, A
    Hasselbach, F
    NATURE, 2002, 418 (6896) : 392 - 394
  • [49] Hanbury Brown and Twiss: Important, anti-weird, beautiful
    Degiorgio, Vittorio
    PHYSICS TODAY, 2009, 62 (03) : 10 - 10
  • [50] Observation of the Hanbury Brown-Twiss effect with ultracold molecules
    Rosenberg, Jason S.
    Christakis, Lysander
    Guardado-Sanchez, Elmer
    Yan, Zoe Z.
    Bakr, Waseem S.
    NATURE PHYSICS, 2022, 18 (09) : 1062 - +