On solutions of the singular minimal surface equation

被引:0
|
作者
Ulrich Dierkes
机构
[1] Universität Duisburg-Essen,Fakultät für Mathematik
关键词
Bernstein-type theorems; Entire supersolutions; Minimal surfaces; Dirichlet problem; 35A15; 35B08; 35J75; 49Q05; 49Q10; 49Q20; 53A10; 53C42;
D O I
暂无
中图分类号
学科分类号
摘要
Results of Bernstein type are proven for supersolutions of the singular minimal surface equation when α<0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha <0$$\end{document}. In particular the non-existence of “entire” minimal graphs in hyperbolic space is shown. In addition we construct a foliation of Rn×R+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}^n\times \mathbb {R}^+$$\end{document} consisting of minimizing surfaces, and solve a Dirichlet problem for the singular minimal surface equation.
引用
收藏
页码:505 / 516
页数:11
相关论文
共 50 条