Symmetric solutions of the singular minimal surface equation

被引:0
|
作者
Ulrich Dierkes
Nico Groh
机构
[1] Universität Duisburg-Essen,Fakultät für Mathematik
来源
关键词
Singular minimal surface equation; Symmetric solutions; Stability; 49Q05; 53A10;
D O I
暂无
中图分类号
学科分类号
摘要
We classify all rotational symmetric solutions of the singular minimal surface equation in both cases α<0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha <0$$\end{document} and α>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha >0$$\end{document}. In addition, we discuss further geometric and analytic properties of the solutions, in particular stability, minimizing properties and Bernstein-type results.
引用
收藏
页码:431 / 453
页数:22
相关论文
共 50 条