Contrast estimation for noisy observations of diffusion processes via closed-form density expansions

被引:0
|
作者
Salima El Kolei
Fabien Navarro
机构
[1] CREST - ENSAI,
[2] SAMM - Université Paris 1 Panthéon-Sorbonne,undefined
关键词
M-estimator; Deconvolution; Least square method; Parametric approach; Diffusion processes; Hermite expansion;
D O I
暂无
中图分类号
学科分类号
摘要
When a continuous-time diffusion is observed only at discrete times with measurement noise, in most cases the transition density is not known and the likelihood is in the form of a high-dimensional integral that does not have a closed-form solution and is difficult to compute accurately. Using Hermite expansions and deconvolution strategy, we provide a general explicit sequence of closed-form contrast for noisy and discretely observed diffusion processes. This work allows the estimation of many diffusion processes. We show that the approximation is very accurate and prove that minimizing the sequence results in a consistent and asymptotically normal estimator. Monte Carlo evidence for the Ornstein–Uhlenbeck process reveals that this method works well and outperforms the Euler expansion of the transition density in situations relevant for financial models.
引用
收藏
页码:303 / 336
页数:33
相关论文
共 50 条
  • [21] Hybrid estimation for ergodic diffusion processes based on noisy discrete observations
    Kaino, Yusuke
    Nakakita, Shogo H.
    Uchida, Masayuki
    STATISTICAL INFERENCE FOR STOCHASTIC PROCESSES, 2020, 23 (01) : 171 - 198
  • [22] A two-step estimation of diffusion processes using noisy observations
    Ye, Xu-Guo
    Lin, Jin-Guan
    Zhao, Yan-Yong
    JOURNAL OF NONPARAMETRIC STATISTICS, 2018, 30 (01) : 145 - 181
  • [23] A damped diffusion framework for financial modeling and closed-form maximum likelihood estimation
    Li, Minqiang
    JOURNAL OF ECONOMIC DYNAMICS & CONTROL, 2010, 34 (02): : 132 - 157
  • [24] BAYESIAN ESTIMATION OF THE MULTIFRACTALITY PARAMETER FOR IMAGES VIA A CLOSED-FORM WHITTLE LIKELIHOOD
    Combrexelle, S.
    Wendt, H.
    Tourneret, J. -Y.
    Abry, P.
    McLaughlin, S.
    2015 23RD EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO), 2015, : 1003 - 1007
  • [25] Unbiased Closed-Form GPS Position Estimation
    Knight, Jonathan Kipling
    PROCEEDINGS OF THE 28TH INTERNATIONAL TECHNICAL MEETING OF THE SATELLITE DIVISION OF THE INSTITUTE OF NAVIGATION (ION GNSS+ 2015), 2015, : 2766 - 2771
  • [26] Robust R-D Parameter Estimation via Closed-Form PARAFAC
    da Costa, Joao Paulo C. L.
    Roemer, Florian
    Weis, Martin
    Haardt, Martin
    2010 INTERNATIONAL ITG WORKSHOP ON SMART ANTENNAS (WSA 2010), 2010, : 99 - 106
  • [27] Kinetic parameter estimation using a closed-form expression via integration by parts
    Zeng, Gengsheng L.
    Hernandez, Andrew
    Kadrmas, Dan J.
    Gullberg, Grant T.
    PHYSICS IN MEDICINE AND BIOLOGY, 2012, 57 (18): : 5809 - 5821
  • [28] Estimating jump-diffusions using closed-form likelihood expansions
    Li, Chenxu
    Chen, Dachuan
    JOURNAL OF ECONOMETRICS, 2016, 195 (01) : 51 - 70
  • [29] Closed-form likelihood expansions for multivariate time-inhomogeneous diffusions
    Choi, Seungmoon
    JOURNAL OF ECONOMETRICS, 2013, 174 (02) : 45 - 65
  • [30] DENSITY-ESTIMATION FOR CONTINUOUS-TIME PROCESSES FROM NOISY OBSERVATIONS
    BLANKE, D
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1995, 321 (05): : 623 - 626