BDC-YOLOv5: a helmet detection model employs improved YOLOv5

被引:0
|
作者
Lihong Zhao
Turdi Tohti
Askar Hamdulla
机构
[1] Xinjiang University,School of Information Science and Engineering
[2] Xinjiang Key Laboratory of Signal Detection and Processing,undefined
来源
关键词
Target detection; Attention mechanism; Feature fusion; Safety helmet-wearing detection;
D O I
暂无
中图分类号
学科分类号
摘要
Automatic helmet-wearing detection is an effective way to prevent head injuries for construction site workers. However, the current helmet detection algorithms still need to improve, such as low accuracy of small target recognition and poor adaptability to complex scenes. This paper proposes possible improvements to YOLOv5 and calls it BiFPN Detection CBAM YOLOv5(BDC-YOLOv5). Regarding the problem of error detection, two modifications are offered. First, an additional detection layer is introduced on YOLOv5, and more detection heads are used to detect targets of different scales, thus improving the detection ability of the model in complex scenarios. Then, the Bidirectional Feature Pyramid Network (BiFPN) is introduced, and the shallow semantic features can be fused better by adding jump connections, which significantly reduces the detection error rate of the model. In terms of reducing the missed detection rate, the Convolutional Block Attention Module (CBAM) was added to the original YOLOv5, thus making the model more focused on all helpful information. Finally, the BiFPN, the additional detection layer, and the CBAM module are combined simultaneously in YOLOv5, which reduces the model’s false detection and missed detection rate while improving the detection ability of small-scale objects. Experimental results on the public dataset Safety-Helmet-Wearing-Dataset(SHWD) show a mean average precision (Map) improvement of 2.6%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\%$$\end{document} compared to the original YOLOv5, which reflects the significant improvement in the target monitoring capability of the model. To demonstrate the performance of the proposed BDC-YOLOv5 model, a series of comparative experiments with other mainstream algorithms are carried out.
引用
收藏
页码:4435 / 4445
页数:10
相关论文
共 50 条
  • [41] YOLOv5-ASFF: A Multistage Strawberry Detection Algorithm Based on Improved YOLOv5
    Li, Yaodi
    Xue, Jianxin
    Zhang, Mingyue
    Yin, Junyi
    Liu, Yang
    Qiao, Xindan
    Zheng, Decong
    Li, Zezhen
    AGRONOMY-BASEL, 2023, 13 (07):
  • [42] GRP-YOLOv5: An Improved Bearing Defect Detection Algorithm Based on YOLOv5
    Zhao, Yue
    Chen, Bolun
    Liu, Bushi
    Yu, Cuiying
    Wang, Ling
    Wang, Shanshan
    SENSORS, 2023, 23 (17)
  • [43] STBNA-YOLOv5: An Improved YOLOv5 Network for Weed Detection in Rapeseed Field
    Tao, Tao
    Wei, Xinhua
    AGRICULTURE-BASEL, 2025, 15 (01):
  • [44] Fast Helmet and License Plate Detection Based on Lightweight YOLOv5
    Wei, Chenyang
    Tan, Zhao
    Qing, Qixiang
    Zeng, Rong
    Wen, Guilin
    SENSORS, 2023, 23 (09)
  • [45] Research on Helmet Wearing Detection in Multiple Scenarios Based on YOLOv5
    Yi, Zhentong
    Wu, Gui
    Pan, Xueliang
    Tao, Jun
    PROCEEDINGS OF THE 33RD CHINESE CONTROL AND DECISION CONFERENCE (CCDC 2021), 2021, : 769 - 773
  • [46] Design and Implementation of Safety Helmet Detection System Based on YOLOv5
    Guan, Yaqi
    Li, Wenqiang
    Hu, Tianyu
    Hou, Qun
    2021 2ND ASIA CONFERENCE ON COMPUTERS AND COMMUNICATIONS (ACCC 2021), 2021, : 69 - 73
  • [47] Precision detection of crop diseases based on improved YOLOv5 model
    Zhao, Yun
    Yang, Yuan
    Xu, Xing
    Sun, Cheng
    FRONTIERS IN PLANT SCIENCE, 2023, 13
  • [48] Laboratory Behavior Detection Method Based on Improved Yolov5 Model
    Zhang, Zhaofeng
    Ao, Daiqin
    Zhou, Luoyu
    Yuan, Xiaolong
    Luo, Mingzhang
    2021 INTERNATIONAL CONFERENCE ON CYBER-PHYSICAL SOCIAL INTELLIGENCE (ICCSI), 2021,
  • [49] Fish detection method based on improved YOLOv5
    Li, Lei
    Shi, Guosheng
    Jiang, Tao
    AQUACULTURE INTERNATIONAL, 2023, 31 (05) : 2513 - 2530
  • [50] An improved lightweight object detection algorithm for YOLOv5
    Luo, Hao
    Wei, Jiangshu
    Wang, Yuchao
    Chen, Jinrong
    Li, Wujie
    PEERJ COMPUTER SCIENCE, 2024, 10