Stability of coincidence points and set-valued covering maps in metric spaces

被引:0
|
作者
A. V. Arutyunov
机构
[1] Russian University of Peoples’ Friendship,
来源
Doklady Mathematics | 2009年 / 80卷
关键词
Small Perturbation; DOKLADY Mathematic; Closed Ball; Linear Normed Space; Coincidence Point;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:555 / 557
页数:2
相关论文
共 50 条
  • [21] A General Coincidence Theory for Set-Valued Maps
    O'Regan, D.
    ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 1999, 18 (03): : 701 - 712
  • [22] Generalized coincidence theory for set-valued maps
    O'Regan, Donal
    JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2017, 10 (03): : 855 - 864
  • [23] Fixed Points and Endpoints of Set-Valued Contractions in Cone Metric Spaces
    Lin, Ing-Jer
    Chen, Chi-Ming
    Jovanovic, Mirko
    Wu, Tzi-Huei
    ABSTRACT AND APPLIED ANALYSIS, 2012,
  • [24] Endpoints and fixed points of set-valued contractions in cone metric spaces
    Wardowski, Dariusz
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 71 (1-2) : 512 - 516
  • [25] Coincidence Point, Best Approximation, and Best Proximity Theorems for Condensing Set-Valued Maps in Hyperconvex Metric Spaces
    A. Amini-Harandi
    A. P. Farajzadeh
    D. O'Regan
    R. P. Agarwal
    Fixed Point Theory and Applications, 2008
  • [26] Coincidence Point, Best Approximation, and Best Proximity Theorems for Condensing Set-Valued Maps in Hyperconvex Metric Spaces
    Amini-Harandi, A.
    Farajzadeh, A. P.
    O'Regan, D.
    Agarwal, R. P.
    FIXED POINT THEORY AND APPLICATIONS, 2008, 2008 (1)
  • [27] Common fixed points of set-valued mappings in hyperconvex metric spaces
    Balaj, M.
    Jorquera, E. D.
    Khamsi, M. A.
    JOURNAL OF FIXED POINT THEORY AND APPLICATIONS, 2018, 20 (01)
  • [28] ON COINCIDENCE AND COMMON FIXED POINTS UNDER HOMOTOPY OF SET-VALUED MAPPING FAMILIES IN b-METRIC SPACES
    Bahmanyar, Esmail
    Naraghirad, Eskandar
    Soltani, Rahmat
    JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2022, 23 (03) : 421 - 433
  • [29] Loose saddle points of set-valued maps in topological vector spaces
    Kim, IS
    Kim, YT
    APPLIED MATHEMATICS LETTERS, 1999, 12 (08) : 21 - 26
  • [30] Coincidence points in the cases of metric spaces and metric maps
    Thi Hong Van Nguyen
    Pasynkov, B. A.
    TOPOLOGY AND ITS APPLICATIONS, 2016, 201 : 57 - 77